LOS ALAMOS NATIONAL LABORATORY
GOVERNING POLICY FOR THE ENVIRONMENT

- We are committed to act as stewards of our environment to achieve our mission in accordance with all applicable environmental requirements.

- We set continual improvement objectives and targets, measure and document our progress, and share our results with our workforce, sponsors, and public.

- We reduce our environmental risk through legacy cleanup, pollution prevention, and long-term sustainability programs.
Los Alamos National Laboratory
2019 Annual Site Environmental Report

National Nuclear Security Administration Los Alamos Field Office
Contact: (505) 667-6691 or NNSALosAlamos@nnsa.doe.gov

Environmental Management Los Alamos Field Office
Contact: (505) 257-7950 or publicaffairs.emla@em.doe.gov
Los Alamos National Laboratory’s (the Laboratory’s) annual site environmental reports are prepared by the Laboratory’s environmental organizations, as required by U.S. Department of Energy Order 231.1B, Administrative Change 1, Environment, Safety, and Health Reporting, and Order 458.1, Administrative Change 3, Radiation Protection of the Public and the Environment.

The following chapters in this report discuss our success in complying with environmental laws, regulations, and orders (Chapter 2, Compliance Summary); how we manage the Laboratory’s environmental performance (Chapter 3, Environmental Programs); how we monitor for air emissions of radioactive materials and climate conditions (Chapter 4, Air Quality); how we monitor for effects of Laboratory operations on groundwater quality (Chapter 5, Groundwater Protection); how we monitor the movement of chemicals and radionuclides by storm water runoff and the levels of chemicals and radionuclides in deposited sediment (Chapter 6, Watershed Quality); how we monitor for the presence, levels, and effects of chemicals and radionuclides in plants, animals, and soil (Chapter 7, Ecosystem Health); and finally, what radionuclide dose or risk from chemical exposure members of the public may experience as a result of Laboratory operations (Chapter 8, Public Dose and Risk Assessment).

This report follows plain language guidelines, as required for federal agencies by the Plain Language Act of 2010. More information about plain language can be found at http://www.plainlanguage.gov/index.cfm. You will notice we have substantially reduced the use of acronyms and abbreviations and are using active voice and personal pronouns.

We hope you find this report useful. If you have suggestions for improving this report, additional questions, or want a copy of this report, please contact us at envoutreach@lanl.gov, or call the Communications Office at 505-665-7000.

CONTENTS

Abstract ... iv
Figures ... viii
Tables .. xvi
Chapter Authors and Contributors.. xix
Executive Summary ... 1

Chapter 1 – INTRODUCTION ... 1-1
 - Background and Purpose ... 1-1
 - Environmental Setting ... 1-3
 - Laboratory Activities and Facilities ... 1-8
 - References ... 1-12

Chapter 2 – COMPLIANCE SUMMARY ... 2-1
 - Introduction ... 2-2
 - Radiation Protection .. 2-2
 - Waste Management Summary ... 2-3
 - Radioactive Wastes ... 2-5
 - Hazardous Wastes .. 2-6
 - Other Wastes .. 2-12
 - Air Quality and Protection .. 2-13
 - Surface Water Quality and Protection ... 2-16
 - Groundwater Quality and Protection ... 2-29
 - Other Environmental Statutes and Orders .. 2-34
 - Inspections and Audits ... 2-43
 - Unplanned Releases .. 2-44
 - Site Resilience .. 2-45
 - Summary of Permits and Legal Orders .. 2-53
 - Quality Assurance .. 2-59
 - References .. 2-62

Chapter 3 – ENVIRONMENTAL PROGRAMS ... 3-1
 - Introduction ... 3-2
 - Institutional Processes and Programs ... 3-2
 - Dedicated “Core” Programs .. 3-21
 - Awards and Recognition ... 3-35
 - Description of the Quality System for Management of Analytical Environmental Data 3-35
 - References .. 3-45
Chapter 4 – AIR QUALITY .. 4-1
 Introduction ... 4-1
 Ambient Air Sampling for Radionuclides .. 4-1
 Exhaust Stack Sampling for Radionuclides .. 4-6
 Monitoring for Gamma and Neutron Direct-Penetrating Radiation .. 4-11
 Total Particulate Matter Air Monitoring .. 4-14
 Meteorological Monitoring .. 4-15
 Quality Assurance ... 4-26
 References ... 4-26

Chapter 5 – GROUNDWATER PROTECTION .. 5-1
 Introduction .. 5-2
 Hydrogeologic Setting ... 5-2
 Groundwater Standards and Screening Levels .. 5-7
 Potential Sources of Contamination ... 5-11
 Groundwater Monitoring Network ... 5-11
 Groundwater Data Interpretation .. 5-17
 Groundwater Sampling Results by Monitoring Group ... 5-17
 Summary .. 5-38
 Quality Assurance ... 5-38
 References ... 5-39

Chapter 6 – WATERSHED QUALITY .. 6-1
 Introduction .. 6-2
 Standards, Screening Levels, and Designated Uses for Stream Reaches 6-2
 Hydrologic Setting ... 6-11
 Surface Water and Sediment Sampling ... 6-12
 Conclusions .. 6-39
 Quality Assurance ... 6-40
 References ... 6-41

Chapter 7 – ECOSYSTEM HEALTH .. 7-1
 Introduction .. 7-2
 Terrestrial Health Assessment ... 7-3
 Biological Resources Management Program .. 7-27
 Biota Radiation Dose Assessment .. 7-31
 Quality Assurance ... 7-35
 References ... 7-37
Chapter 8 – PUBLIC DOSE AND RISK ASSESSMENT ... 8-1
 Introduction ... 8-1
 Radiological Dose Assessment for the Public ... 8-1
 Nonradiological Materials ... 8-12
 Quality Assurance ... 8-14
 References ... 8-14

Appendix A Standards and Screening Levels for Radionuclides and Other Chemicals in
Environmental Samples ... A-1
 General Formation of a Standard or Screening Level ... A-1
 Radiation Standards .. A-1
 National Pollutant Discharge Elimination System ... A-2
 Drinking Water Standards ... A-2
 Surface Water Standards ... A-3
 Soils and sediments ... A-3
 Foodstuffs ... A-3
 Biota .. A-3
 References ... A-4

Appendix B Units of Measurement ... B-1
 Data Handling of Radiochemical Samples ... B-2
 Reference .. B-2

Appendix C Descriptions of Technical Areas and Their Associated Programs C-1

Appendix D Related Websites .. D-1
FIGURES

Figure 1-1. Entrance to Los Alamos Scientific Laboratory Technical Area 1, circa 1950 1-1
Figure 1-2. Regional location of the Laboratory .. 1-4
Figure 1-3. Municipalities and tribal properties within a 50-mile radius of the Laboratory 1-5
Figure 1-4. Technical Areas (TAs) and key facilities of the Laboratory in relation to surrounding
landholdings .. 1-10
Figure 2-1. This graph plots Laboratory criteria pollutant emissions from 2015 through 2019.
These totals do not include small boilers or standby generators .. 2-15
Figure 2-2. Annual average temperatures for Los Alamos. The dashed lines represent long-term
climatological average temperatures, the black line represents the 5-year running
average temperature, and the green line represents the 1-year average. 2-45
Figure 2-3. Average summer (June, July, August) Los Alamos temperatures. The dashed lines
represent the trend line for maximum, minimum, and average summer
temperatures, which show that summer temperatures have been continuously
increasing since 1990. .. 2-46
Figure 2-4. Los Alamos cooling degree days per year. The dashed line represents the trend line
for cooling degree days, which shows cooling degree days have increased, resulting
in more energy needed to cool buildings. ... 2-46
Figure 2-5. Los Alamos heating degree days. The dashed line represents the trend line for
heating degree days, which shows that heating degree days have decreased,
resulting in less energy needed to heat buildings. .. 2-47
Figure 2-6. Technical Area 06 annual average wind speed at 12 meters above the ground. The
dashed line represents the trend line for wind speed, which shows the annual
average wind speed has been increasing since 1994 ... 2-48
Figure 2-7. Number of National Weather Service Red Flag Warning days for zone 102
(Los Alamos). Since 2015, there has been an increase in the number of red flag
days, but overall there has not been a trend. ... 2-49
Figure 2-8. Annual precipitation totals for Los Alamos. The dashed lines represent long-term
climatological average total precipitation, the black line represents the 5-year running
average precipitation, and the green line represents the 1-year total
precipitation. Significant drought since the 1990s has resulted in below-average
precipitation in many recent years. ... 2-50
Figure 2-9. Number of days per year with precipitation greater than 0.5 inches. The dashed line
represents the trend line for days with precipitation greater than 0.5 inches. The
slight decreasing trend since 1950 is not statistically significant. .. 2-50
Figure 2-10. Annual average snowfall in Los Alamos. The dashed line represents the trend line for
snowfall, which shows a decrease in annual snowfall. .. 2-51
Figure 3-1. View looking northeast from the Main Hill road in Los Alamos (New Mexico State
Road 502) toward the Rio Grande Valley and the Sangre de Cristo Mountains 3-1
Figure 3-2. Bunker 18-2 during concrete restoration in July 2019 ... 3-25
Figure 3-3. Bunker 18-5 during concrete restoration in July 2019 ... 3-25
Figure 3-4. Public tour at Pajarito Site in Technical Area 18 during July 2019 .. 3-26
Figure 3-5. Visitors inside the Slotin building at Pajarito Site in Technical Area 18 during July 2019 3-26
Figure 3-6. Firewood prepared from trees impacted by the 2019 wind event was cut and stacked for removal. .. 3-28
Figure 3-7. Before mowing for wildland fire evacuation route maintenance....................................... 3-29
Figure 3-8. After mowing for wildland fire evacuation route maintenance .. 3-29
Figure 3-9. Staff from LANL’s Sustainability Program accept an award for implementation of LANL’s Smart Labs Program. .. 3-35
Figure 3-10. Functional diagram of the Sample Management Office work. Green ovals represent the three main Sample Management Office functions. Figures with blue background show data collection steps that directly involve the Sample Management Office.3-37
Figure 4-1. Environmental air-monitoring stations at and near the Laboratory .. 4-2
Figure 4-2. Environmental air-monitoring stations at the Laboratory’s Technical Area 54, Area G 4-3
Figure 4-3. Locations of thermoluminescent dosimeters at Technical Area (TA) 53 that are part of the direct-penetrating radiation monitoring network (DPRNET) .. 4-13
Figure 4-4. Locations of thermoluminescent dosimeters at Area G that are part of the direct-penetrating radiation monitoring network (DPRNET) .. 4-14
Figure 4-5. Locations of five meteorological monitoring towers and a rain gage 4-16
Figure 4-6. Los Alamos 2019 temperatures in degrees Fahrenheit compared with record values and normal values .. 4-21
Figure 4-7. Technical Area 06 cumulative precipitation in 2019 versus 30-year average, and the daily precipitation in 2019 .. 4-22
Figure 4-8. Wind roses for 2019 at the four mesa-top meteorological towers ... 4-23
Figure 4-9. Temperature history for Los Alamos with the 1-year average in green and 5-year running average in black. The dashed lines represent long-term averages (25 and 30 years) .. 4-24
Figure 4-10. Technical Area 06 decadal average temperatures with two times the standard error for 1960 through 2019 .. 4-25
Figure 4-11. Total precipitation history for Los Alamos with the 1-year average in green, 5-year running average in black, and the dashed lines representing long-term averages (25 and 30 years) .. 4-25
Figure 5-1. Generalized geologic cross-section of the Pajarito Plateau .. 5-3
Figure 5-2. Illustration of geologic and hydrologic relationships on the Pajarito Plateau showing the three modes of groundwater occurrence: perched alluvial groundwater, perched-intermediate-depth groundwater, and groundwater within the regional aquifer. .. 5-4
Figure 5-3. Contour map of average water table elevations for the regional aquifer. This map is a generalization of the data .. 5-5
Figure 5-4. Major liquid release outfalls potentially affecting groundwater; most outfalls shown are currently inactive. ... 5-13
Figure 5-5. Groundwater monitoring wells and springs assigned to area-specific monitoring groups .. 5-14

Figure 5-6. Groundwater monitoring wells and springs assigned to watershed-specific portions of the General Surveillance monitoring group .. 5-15

Figure 5-7. Water supply wells and piezometers used for monitoring at Los Alamos County, the city of Santa Fe Buckman well field, and Pueblo de San Ildefonso, and springs used for groundwater monitoring in White Rock Canyon ... 5-16

Figure 5-8. Tritium concentrations in sampled perched-intermediate groundwater from wells in the Technical Area 21 monitoring group in Los Alamos Canyon ... 5-19

Figure 5-9. Approximation of the chromium plume footprint in the regional aquifer, as defined by the 50-microgram-per-liter New Mexico Environment Department groundwater standard, and locations of the chromium interim measures injection and extraction wells in 2019 .. 5-21

Figure 5-10. The Chromium Investigation monitoring group perched-intermediate groundwater and regional aquifer monitoring wells. The white dashed outline encompasses the wells included in the monitoring group. Labels for the wells include maximum chromium concentrations in 2019 at wells with recorded concentrations greater than the New Mexico groundwater standard of 50 micrograms per liter (µg/L). ... 5-22

Figure 5-11. Trends in chromium concentrations for three of the regional aquifer wells that exceeded the New Mexico Groundwater Standard (NM GW STD) for chromium of 50 micrograms per liter (µg/L) ... 5-23

Figure 5-12. Trends in the chromium concentrations for four of the regional aquifer wells that monitor the effectiveness of the interim measure at the downgradient plume edge. The New Mexico Groundwater Standard (NM GW STD) for chromium is 50 micrograms per liter (µg/L). ... 5-24

Figure 5-13. Trends in chromium concentrations of two regional wells (R-11 and the two screens of R-45) in the Chromium Investigation monitoring group located along the northeast edge of the plume; these trends are not a reflection of the interim measure, but rather a trend in chromium concentrations in water recharging the regional aquifer. The New Mexico Groundwater Standard (NM GW STD) for chromium is 50 micrograms per liter (µg/L). ... 5-25

Figure 5-14. Regional monitoring wells R-43 (two screens) and R-62 are located on the northwestern portion of the chromium plume. These two wells show a continued increase in chromium concentrations in 2019. ... 5-25

Figure 5-15. Trends in chromium concentrations for perched-intermediate groundwater monitoring wells in the Chromium Investigation monitoring group with chromium concentrations that exceeded the New Mexico Groundwater Standard (NM GW STD) of 50 micrograms per liter (µg/L) ... 5-26

Figure 5-16. Trends in perchlorate concentrations for perched-intermediate groundwater monitoring wells in the Chromium Investigation monitoring group with perchlorate detections above the New Mexico tap water screening level of 13.8 micrograms per liter (µg/L) ... 5-27
Figure 5-17. Concentrations of 1,4-dioxane in perched-intermediate groundwater monitoring wells with detections of 1,4-dioxane in the Chromium Investigation monitoring group. The New Mexico groundwater standard for 1,4-dioxane is 4.59 micrograms per liter (µg/L). Note: Samples collected in November were analyzed by two different methods. Additional samples will be collected to verify the trends..........................5-27

Figure 5-18. Tritium concentrations in perched-intermediate groundwater monitoring wells in the Chromium Investigation monitoring group. The U.S. Environmental Protection Agency maximum contaminant level for tritium in drinking water is 20,000 picocuries per liter (pCi/L)..5-28

Figure 5-19. RDX concentrations in regional aquifer well R-68 and R-69 screens 1 and 2. The New Mexico groundwater standard for RDX is 9.66 micrograms per liter (µg/L)...5-30

Figure 5-20. RDX concentrations in regional aquifer wells R-18 and R-63. The New Mexico groundwater standard for RDX is 9.66 micrograms per liter (µg/L)...5-30

Figure 5-21. RDX concentrations in two springs in Cañon de Valle, one spring in Martin Spring Canyon, and one spring in Bulldog Gulch, in Technical Area 16 (see locations in Figure 5-5). The New Mexico groundwater standard for RDX is 9.66 micrograms per liter (µg/L). ..5-31

Figure 5-22. RDX concentrations in alluvial groundwater wells in Cañon de Valle and Fishladder Canyon. The New Mexico groundwater standard for RDX is 9.66 micrograms per liter (µg/L)..5-31

Figure 5-23. RDX concentrations in perched-intermediate groundwater wells. The New Mexico groundwater standard for RDX is 9.66 micrograms per liter (µg/L)...5-32

Figure 5-24. Strontium-90 concentrations at alluvial monitoring wells LAO-3a and LAUZ-1. The U.S. Environmental Protection Agency maximum contaminant level for strontium-90 in drinking water is 8 picocuries per liter (pCi/L)..5-34

Figure 5-25. Perchlorate concentrations at Vine Tree Spring. The New Mexico risk-based screening level for perchlorate is 13.8 micrograms per liter (µg/L)...5-35

Figure 5-26. Perchlorate concentrations at General Surveillance monitoring group and groundwater discharge plan monitoring wells MCO-4B, MCO-6, and MCO-7 in Mortandad Canyon alluvial groundwater. The New Mexico tap water screening level for perchlorate is 13.8 micrograms per liter (µg/L)..5-36

Figure 5-27. Concentrations of 1,1,1-trichloroethane in Pajarito Canyon perched-intermediate groundwater at General Surveillance monitoring group well 03-B-13. The New Mexico groundwater standard for 1,1,1-trichloroethane is 200 micrograms per liter (µg/L)..5-37

Figure 5-28. Concentrations of 1,4-dioxane in Pajarito Canyon perched-intermediate groundwater at General Surveillance monitoring group well 03-B-13. The New Mexico groundwater standard for 1,4-dioxane is 4.59 micrograms per liter (µg/L)..5-37

Figure 6-1. Stream reaches and watersheds within and around the Laboratory. Map shows the classifications of streams from Standards for Interstate and Intrastate Surface Waters, Title 20, Chapter 6, Part 4 of the New Mexico Administrative Code (20.6.4 NMAC; New Mexico Water Quality Control Commission 2017). ..6-5
Figure 6-2. Total June–October precipitation from 1995 to 2019 averaged across the Laboratory’s meteorological tower network (Technical Area 06, Technical Area 49, Technical Area 53, Technical Area 54, and North Community), and estimated June–October storm water runoff volume in Laboratory canyons from 1995 to 2019. Dashed line indicates data with potential quality issues. .. 6-12

Figure 6-3. Locations sampled for storm water in 2019 at stream gaging stations and at sediment-detention basins in upper Los Alamos Canyon and for base flow below springs ... 6-14

Figure 6-4. Individual Permit (IP) site monitoring areas where automated samplers collected compliance storm water samples in 2019 ... 6-15

Figure 6-5. Locations sampled in 2019 for sediment as part of the annual environmental surveillance program.. 6-17

Figure 6-6. Los Alamos Canyon copper concentrations in filtered storm water from Individual Permit samplers and gaging stations and base flow from 2011–2019. Top panel: median storm water copper values for each sampling location from 2011–2019. Bottom panels: dissolved copper concentrations from Individual Permit and gage station samples from 2011 and 2019.. 6-27

Figure 6-7. Sandia Canyon and Mortandad Canyon watershed copper concentrations in filtered storm water from Individual Permit samplers and gaging stations and base flow from 2011 to 2019. Top panel: median storm water copper values for each sampling location between 2011 and 2019. Bottom panels: dissolved copper concentrations from Individual Permit and gage station samples from 2011 and 2019. ... 6-28

Figure 6-8. Sandia Canyon watershed lead concentrations in filtered storm water from Individual Permit samplers, gaging stations, and base flow from 2011–2019. Top panel: median storm water lead values for each sampling location from 2011–2019. Bottom panels: dissolved lead concentrations of Individual Permit and gage station samples from 2011–2019. ... 6-30

Figure 6-9. Sandia Canyon watershed zinc concentrations in filtered storm water from Individual Permit samplers and gaging stations and base flow from 2011 to 2019. Top panel: median storm water zinc values for each sampling location between 2011 and 2019. Bottom panels: dissolved zinc concentrations from Individual Permit and gage station samples from 2011 to 2019. ... 6-32

Figure 6-10. Los Alamos Canyon watershed total PCB concentrations in unfiltered storm water from Individual Permit samplers and gaging stations and base flow from 2011 to 2019. Top panel: median storm water total PCB values for each sampling location between 2011 and 2019. Bottom panels: total PCB concentrations from Individual Permit and gage station samples from 2011 to 2019. .. 6-37

Figure 6-11. Sandia Canyon and Mortandad Canyon watershed total PCB concentrations in unfiltered storm water from Individual Permit samplers and gaging stations and base flow from 2011 to 2019. Top panel: median storm water total PCB values for each sampling location between 2011 and 2019. Bottom panels: total PCB concentrations from Individual Permit and gage station samples from 2011 to 2019. ... 6-39
Figure 7-1. Locations of soil and vegetation samples collected around Area G in 2019. Note: MDA is Material Disposal Area.

Figure 7-2. (A) Americium-241, (B) plutonium-238, (C) plutonium-239/240 activities in surface soil samples collected from five locations on the northern, northeastern, and eastern side (locations 38-01, 40-01, 42-01, 45-05, and 48-01), and (D) tritium activities in surface soil samples collected from two locations on the southern side (locations 29-03 and 30-01) of Area G at Technical Area 54 from 2009 to 2019. Data are compared with the regional statistical reference level (green dashed line) and the lowest no-effect ecological screening level (red dashed line). Note the logarithmic scale on the vertical axis. Points represent mean and error bars represent standard deviation. Bottom error bars are absent on some points as the error would have been a negative value; however, negative values cannot be shown on a logarithmic axis. Note: pCi/g = picocuries per gram.

Figure 7-3. (A) Americium-241 activities in overstory vegetation samples collected from five locations on the northeastern corner of Area G (locations 38-01, 40-01, 42-01, 45-05, and 48-01), and (B) tritium activities in overstory vegetation samples collected from two southern locations (locations 29-03 and 30-01) around Area G at Technical Area 54 from 2009 to 2019. Data are compared with the regional statistical reference level (green dashed line) and biota dose screening level for overstory vegetation (red dashed line). Note the logarithmic scale on the vertical axis. Points represent mean and error bars represent standard deviation. Bottom error bars are absent on some points as the error would have been a negative value; however, negative values cannot be shown on a logarithmic axis. Note: pCi/g = picocuries per gram and pCi/mL = picocuries per milliliter.

Figure 7-4. (A) Americium-241, (B) plutonium-238, (C) plutonium-239/240, and (D) uranium-234 and uranium-238 activities in soil collected near the Technical Area 54 and Pueblo de San Ildefonso border from 2009 through 2019. Results from 2009 through 2015 were at the T3-E location (near the fence); results from 2016 through 2019 were at the T3-B location (near the road). Results from 2018 and 2019 are the average of duplicated samples. Data are compared with the regional statistical reference level (green dashed line) and the lowest no-effect ecological screening level (red dashed line). Note the logarithmic scale on the vertical axis. Points represent true values (between 2009 and 2017, n = 1 each) or represent mean values (between 2018 and 2019, n = 2 each), and error bars represent standard deviation. Note: pCi/g = picocuries per gram.

Figure 7-5. Soil, sediment, and biota sample locations at the Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) at Technical Area 15.
Figure 7-6. Uranium-238 activities in surface soil and sediment samples collected around the Dual-Axis Radiographic Hydrodynamic Test Facility and in the firing point soil samples from 2009 to 2019 compared with the baseline statistical reference level (mean plus 3 standard deviations of soil uranium-238 pre-operations; green dashed line) and the lowest no-effect ecological screening level for the generic plant as an ecological receptor (red dashed line). Note the logarithmic scale on the vertical axis. Points represent true values (firing point) or represent means (sediment and soil) and error bars represent standard deviation. Bottom error bars are absent on some points as the error would have been a negative value; however, negative values cannot be shown on a logarithmic axis. Note: pCi/g = picocuries per gram.

Figure 7-7. (A) Selenium and (B) beryllium concentrations in surface soil and sediment samples collected around the Dual-Axis Radiographic Hydrodynamic Test Facility and near the firing point soil sample from 2009 to 2019, compared with the baseline statistical reference level (mean plus 3 standard deviations of soil concentrations pre-operations; green dashed line) and the lowest no-effect ecological screening level (red dashed line). Note the linear scale on the vertical axis. Points represent true values (firing point) or represent means (sediment and soil, n = 4 each) and error bars represent standard deviation. Note: mg/kg = milligrams per kilogram.

Figure 7-8. Uranium-234 and uranium-238 activities in nestling samples collected around the Dual-Axis Radiographic Hydrodynamic Test (DARHT) Facility and from the background location located at Bandelier National Monument from 2017 to 2019. Data are compared with the regional statistical reference level (the mean plus 3 standard deviations of background concentrations; purple dashed line for uranium-234 and green dashed line for uranium-238) compared with the biota dose screening level for the generic plant as an ecological receptor (red dashed line for uranium-234 and gray dashed line for uranium-238). Note the linear scale on the vertical axis. Columns represent mean values and error bars represent standard deviation. Note: pCi/g = picocuries per gram.

Figure 7-9. Americium-241 and plutonium-239/240 in understory vegetation collected on the upstream side (retention basin) of the Los Alamos Canyon weir from 2010 to 2019 compared with the biota dose screening level (red dashed line), and with the regional statistical reference level (green dashed line for americium-241 and gray dashed line for plutonium-239/240; the gray dashed line is underneath the green dashed line). Note the logarithmic scale on the vertical axis. Points represent true values; error bars are not available as only one sample was collected per year. Note: pCi/g = picocuries per gram.

Figure 7-10. Strontium-90 and plutonium-239/240 in small mammals collected on the upstream side (retention basin) of the Los Alamos Canyon weir from 2010 to 2019 compared with the biota dose screening level (red dashed line for plutonium-239/240 and purple dashed line for strontium-90), and with the regional statistical reference level (green dashed line for plutonium-239/240 and gray dashed line for strontium-90). Note the logarithmic scale on the vertical axis. Points represent true values; error bars are not available as only one sample was collected per year. Note: pCi/g = picocuries per gram.
Figure 7-11. (A) Chromium and zinc and (B) PCB concentrations in individual whole-body mice samples collected upstream (in the retention basin) of the Los Alamos Canyon weir from 2010 to 2019 compared with the regional statistical reference level (mean plus 3 standard deviations of small mammals collected from background locations; green dashed line for zinc and PCBs; purple dashed line for chromium). Note vertical axis is a logarithmic scale for chromium and zinc and a linear scale for PCBs. Points represent true values or the mean when multiple results were available; error bars represent standard deviation. Note: mg/kg = milligrams per kilogram. 7-21

Figure 7-12. (A) Zinc and (B) PCB concentrations in individual whole-body mouse samples collected upstream (in the retention basin) of the Pajarito Canyon flood-retention structure from 2009 to 2019 compared with the regional statistical reference level (mean plus 3 standard deviations of small mammals collected from background locations, green dashed line). Note the vertical axis is linear. Points represent the mean. Error bars represent standard deviation. Note: mg/kg = milligrams per kilogram. 7-23

Figure 7-13. Locations of animals collected opportunistically from within and around the Laboratory in 2019 7-24

Figure 8-1. The average Los Alamos County radiation background dose compared with average U.S. radiation background dose (Gillis et al. 2014) 8-2

Figure 8-2. Locations of foodstuffs samples collected around Los Alamos National Laboratory, from surroundings communities, and from background locations in 2019 8-4

Figure 8-3. Annual collective dose (person-rem) to the population within 80 kilometers of the Laboratory 8-9

Figure 8-4. Annual maximally exposed individual offsite dose 8-10
TABLES

Table 1-1. Estimated Racial and Ethnic Composition of the Population within Los Alamos, Santa Fe, Sandoval, and Rio Arriba Counties during 2014–2018 (Census 2020b) 1-3
Table 1-2. Key Facilities .. 1-9
Table 2-1. LANL Waste Types and Disposal Methods .. 2-4
Table 2-2. DOE Low-Level Waste Disposal Facility Management Status for Area G 2-6
Table 2-3. Approximate Volumes of Mixed Wastes Stored and Shipped Offsite for Treatment and/or Disposal under the Laboratory’s Site Treatment Plan by the Management and Operating Contractor (Triad) and the Legacy Waste Cleanup Contractor (N3B) During Fiscal Year 2019 ... 2-12
Table 2-4. Calculated Emissions of Regulated Air Pollutants Reported to the New Mexico Environment Department in 2019 ... 2-14
Table 2-5. Volume of Effluent Discharged from Permitted Outfalls in 2019 .. 2-17
Table 2-6. Instances in which Samples Exceeded Permit Limits at National Pollutant Discharge Elimination System Permitted Industrial and Sanitary Outfalls in 2019 2-18
Table 2-7. Multi-Sector General Permit Tracking Numbers by Operator and Covered Industrial Activity ... 2-19
Table 2-8. 2019 Exceedances of the Management and Operating Contractor’s National Pollutant Discharge Elimination System Multi-Sector General Permit-Impaired Waters* Limits 2-21
Table 2-9. 2019 Exceedances of the Management and Operating Contractor’s (Triad’s) National Pollutant Discharge Elimination System Multi-Sector General Permit Quarterly Benchmarks* ... 2-21
Table 2-10. 2019 Exceedances of the Management and Operating Contractor’s (Triad’s) National Pollutant Discharge Elimination System Multi-Sector General Permit Effluent Limitations* ... 2-22
Table 2-11. 2019 Exceedances of the Legacy Cleanup Contractor’s (N3B’s) National Pollutant Discharge Elimination System Multi-Sector General Permit Quarterly Benchmarks* 2-23
Table 2-12. 2019 Exceedances of LANL’s National Pollutant Discharge Elimination System Individual Permit Target Action Levels ... 2-27
Table 2-13. 2019 Locations with First-time Groundwater Quality Standard or Screening Level Exceedances ... 2-30
Table 2-14. Threatened, Endangered, and Other Sensitive Species Occurring or Potentially Occurring at the Laboratory ... 2-37
Table 2-15. List of Common Names and Latin Names of Invasive Species Known to Occur at LANL 2-39
Table 2-16. Pesticides used in 2019 ... 2-40
Table 2-17. Status of Emergency Planning and Community Right-To-Know Act Reporting in 2019 2-41
Table 2-18. Summary of 2019 Total Annual Releases under Emergency Planning and Community Right-to-Know Act, Section 313 ... 2-41
Table 2-19. 2019 Environmental Occurrences ... 2-42
Table 2-20. Environmental Inspections and Audits Conducted at the Laboratory during 2019 2-44
Table 2-21. 2019 Unplanned Reportable Releases ... 2-44
Table 2-22. Environmental Permits and Legal Orders under which the Laboratory Operated in
2019 .. 2-53
Table 3-1. LANL Significant Environmental Aspects ... 3-5
Table 3-2. Fiscal Year 2019 Status and Planned Strategies for the Laboratory’s Site Sustainability
Goals ... 3-13
Table 3-3. Summary of Reports Submitted and Site Investigations Conducted during 2019 under
the N3B Environmental Remediation Program ... 3-31
Table 3-4. DOE Consolidated Audit Program – Accreditation Program Audits of Laboratories
Contracted by N3B and/or Triad in Fiscal Year 2019 .. 3-42
Table 3-5. Audits of Treatment, Storage, and Disposal Facilities Used by N3B in Fiscal Year 2019
under the DOE Consolidated Audit Program .. 3-44
Table 4-1. Average Background Radionuclide Activities in the Regional Atmosphere 4-4
Table 4-2. Airborne Tritium as Tritiated Water Activities for 2019—Group Summaries 4-4
Table 4-3. Airborne Americium-241 Activities for 2019—Group Summaries 4-5
Table 4-4. Airborne Plutonium-238 and Plutonium-239/240 Activities for 2019—Group
Summaries ... 4-5
Table 4-5. Airborne Uranium-234, -235, and -238 Activities for 2019—Group Summaries 4-5
Table 4-6. Airborne Radioactive Emissions from LANL Buildings with Sampled Stacks in 2019.
Values are expressed in scientific notation. .. 4-8
Table 4-7. Activation Products in 2019 ... 4-9
Table 4-8. Radionuclide Half-Lives ... 4-10
Table 4-9. Gamma Radiation for 2019—Group Summaries .. 4-12
Table 4-10. Neutron Radiation for 2019—Group Summaries ... 4-12
Table 4-11. Records Set between 1924 and 2019 for Los Alamos ... 4-17
Table 4-12. Monthly and Annual Climatological Data for 2019 at Los Alamos 4-19
Table 5-1. Application of Screening Levels to LANL Groundwater Monitoring Data 5-9
Table 6-1. LANL Assessment Units, Impairment Cause, and Designated Use(s) that Are Supported,
Not Supported, or Not Assessed .. 6-7
Table 6-2. 2019 Storm Water and Base Flow Results for Inorganic Chemicals 6-21
Table 6-3. 2019 Storm Water and Base Flow Results for Organic Chemicals and Radionuclides 6-23
Table 6-4. 2019 Sediment Locations Where at Least One Sample Result Exceeded Screening
Levels .. 6-24
Table 6-5. Number of Locations where New Mexico Water Quality Standards were Exceeded for
Storm Water or Base Flow Results in 2019 for Constituents with at Least One
Exceedance ... 6-25
Table 7-1. Dose to Terrestrial Animals at Area G for 2019 DOE Limit: 0.1 rad/day for Terrestrial
Animals ... 7-32
Table 7-2. Dose to Terrestrial Plants at Area G for 2019 DOE Limit 1.0 rad/day for Terrestrial
Plants .. 7-32
Table 7-3. Dose to Terrestrial Animals at Dual-Axis Radiographic Hydrodynamic Test Facility for 2019 DOE Limit: 0.1 rad/day for Terrestrial Animals ... 7-33
Table 7-4. Dose to Terrestrial Plants at Dual-Axis Radiographic Hydrodynamic Test Facility for 2019 DOE Limit: 1.0 rad/day for Terrestrial Plants ... 7-33
Table 7-5. Dose to Terrestrial Animals in Los Alamos Canyon Weir for 2019 DOE Limit: 0.1 rad/day for Terrestrial Animals .. 7-34
Table 7-6. Dose to Terrestrial Plants in Los Alamos Canyon Weir for 2019 DOE Limit: 1 rad/day for Terrestrial Plants .. 7-34
Table 8-1. LANL Radiological Doses for Calendar Year 2019 ... 8-12
CHAPTER AUTHORS AND CONTRIBUTORS

ABSTRACT
Leslie Hansen

EXECUTIVE SUMMARY
Leslie Hansen

1.0 INTRODUCTION
Leslie Hansen
David Bruggeman
Kari Garcia
Ben Sutter
Marjorie Wright

2.0 COMPLIANCE SUMMARY
Ben Bateman
Ashley Bruggeman
David Bruggeman
Leslie Dale
Emily Day
Sean Dolan
Mike Erickson
William Foley
David Fuehne
Robert Gallegos
Ellen Gammon
Kari Garcia
Kathleen Gorman
Jennifer Griffin
Lauren Griffith
Chase Gruber
Charles Hathcock
Jeff Holland
Brian Iacona
Scot Johnson
Danny Katzman
Patrick Kennedy
Terrill Lemke
Sam Loftin
Stas Marczak
Christian Maupin
Jake Meadows
Avril Millensted
Dawn Ramirez
Bruce Robinson
Sonja Salzman
Brad Schilling
Alyssa Schreiber
Margie Stockton
Richard Sturgeon
Dan Thomas
John Valdez
Steve Veenis
Luciana Vigil-Holtermann
Holly Wheeler
Walt Whetham
Jeff Whicker
Steve White
Dave Wirkus
Marjorie Wright
Tim Zimmerly

3.0 ENVIRONMENTAL PROGRAMS
Don Allen
Sonia Ballesteros
Kassidy Boorman
David Bruggeman
Christine Bullock
Sean Dolan
Lance Fresquez
Dave Funk
Robert Gallegos
Kari Garcia
J. P. Garrett
Shannon Gaukler
Morgan Gerard
Deborah Hall
Charles Hathcock
Frazer Lockhart
Alan Madsen
Mike McNaughton
Dan Pava
Andrea Pistone
Kent Rich
Mike Saladen
Sonja Salzman
Sean Sandborgh
Shannon Smith
Shawn Stone
Steve Story
Sue Terp

4.0 AIR QUALITY
Michael McNaughton
David Bruggeman
David Fuehne
Rebecca Lattin

5.0 GROUNDWATER MONITORING
Ashley Kowalewski
Danny Katzman
Lori Huntoon

6.0 WATERSHED QUALITY
Allison Chan
Daria Cuthbertson
Audrey Krehik
Paul Mark
Amanda White

7.0 ECOSYSTEM HEALTH
Shannon Gaukler
Charles Hathcock
Mike McNaughton
Audrey Sanchez
Jenna Stanek
Brent Thompson

8.0 PUBLIC DOSE AND RISK ASSESSMENT
Michael McNaughton
Shannon Gaukler
Christine Bullock
Mary Jo Chastenet
Jeff Whicker

Don Ulrich
Tashia Vigil
Jennifer Von Rohr
Jeff Whicker
Amanda White
Marjorie Wright
This page intentionally blank.
EXECUTIVE SUMMARY

Los Alamos National Laboratory (the Laboratory) is located in Los Alamos County in north-central New Mexico, approximately 60 miles north-northeast of Albuquerque and 25 miles northwest of Santa Fe. The mission of the Laboratory is to solve national security challenges through scientific excellence. Inseparable from our focus on excellence in science and technology is our commitment to environmental stewardship and full compliance with environmental protection laws. Part of the Laboratory’s commitment is to report on its environmental performance. This site environmental report

- characterizes the Laboratory’s environmental performance, including effluent releases, environmental monitoring, and estimated radiological doses to the public and the environment;
- summarizes environmental occurrences and responses;
- confirms compliance with environmental standards and requirements;
- highlights significant programs and efforts; and
- describes property clearance activities in accordance with U.S. Department of Energy (DOE) Order 458.1.

Los Alamos National Laboratory has changed substantially since it was founded as part of the Manhattan Project in 1943. Undoubtedly, the future will continue to bring significant changes to the mission and operations of the Laboratory. Regardless of these changes, we are committed to operating the site sustainably.

Environmental stewardship requires an active management system to provide environmental policy, planning, implementation, corrective actions, and management review. We use an Environmental Management System to accomplish this. The Laboratory has been certified to the International Organization for Standardization’s 14001 standard for the Environmental Management System since April 2006.

The following chapters in this report discuss a range of topics: our success in complying with environmental laws, regulations, and orders (Chapter 2, Compliance Summary); how we manage the Laboratory’s environmental performance (Chapter 3, Environmental Programs); how we monitor for air emissions of radioactive materials and climate conditions (Chapter 4, Air Quality); how we monitor for effects of Laboratory operations on groundwater quality (Chapter 5, Groundwater Protection); how we monitor the movement of chemicals and radionuclides by storm

The Laboratory’s Governing Policy on Environment

We are committed to act as stewards of our environment to achieve our mission in accordance with all applicable environmental requirements. We set continual improvement objectives and targets, measure and document our progress, and share our results with our workforce, sponsors, and the public. We reduce our environmental risk through legacy cleanup, pollution prevention, and long-term sustainability programs.
water runoff and the levels of chemicals and radionuclides in deposited sediment (Chapter 6, Watershed Quality); how we monitor for the presence, levels, and effects of chemicals and radionuclides in plants, animals, and soil (Chapter 7, Ecosystem Health); and finally, what radionuclide dose or risk from chemical exposure members of the public may experience as a result of Laboratory operations (Chapter 8, Public Dose and Risk Assessment).

2019 Environmental Performance Summary

Our environmental performance can be summarized as follows:

- The Laboratory operated under 14 different types of environmental permits and legal orders (Table 2-22 in Chapter 2).
- Work continued on supplemental environmental projects agreed to under a 2016 settlement agreement with the State of New Mexico.
- The New Mexico Environment Department granted certificates of completion for 32 remedial sites in fiscal year 2019. Of the remaining sites, 134 are deferred because of ongoing operations, and 914 have investigations or corrective actions either in progress or pending.
- The Laboratory was fully in compliance with its Clean Air Act, Title V Operating Permit emission limits.
- We discharged approximately 115 million gallons of liquid effluents from eight permitted outfalls. Five of the 794 outfall samples collected (0.6 percent) exceeded effluent quality limits in the outfall permit (Table 2-6 in Chapter 2).
- Two areas of the regional aquifer at the Laboratory have groundwater contaminants that are of sufficient concentration and extent to warrant actions, such as interim measures, further characterization, and potential remediation under the 2016 Consent Order: RDX contamination in the vicinity of Technical Area 16 and chromium contamination beneath Sandia and Mortandad Canyons. Interim measures to control the chromium plume boundary are ongoing and are showing positive results (Chapter 5, Groundwater Protection).
- Five environmental occurrences were reported under DOE Order 232.2, *Occurrence Reporting and Processing of Operations Information* (Table 2-19 in Chapter 2).
- The Laboratory had 6 inspections or audits conducted by regulating agencies or external auditors in 2019 (Table 2-20 in Chapter 2).
- One unplanned release of approximately 2 gallons of treated effluent from the Radioactive Liquid Waste Treatment Facility occurred on Laboratory property, and was reported. We made 19 reports of unplanned nonradioactive liquid releases to the New Mexico Environment Department.
- Work continued on stabilizing and repairing Manhattan Project National Historical Park properties at the Laboratory.
- The Laboratory adopted an updated plan for mitigating wildland fire fuels and addressing forest health, and also hired a Fire Management Officer.
- Radiological doses to the public from Laboratory operations were less than 1 millirem per year, and health risks are indistinguishable from zero.
2019 Environmental Monitoring Highlights

During 2019, we completed the following:

- The Laboratory operated 27 stack monitoring stations and 38 ambient air monitoring stations to measure levels of airborne radiological materials. During 2019, the radioactive emissions from all Laboratory sources amounted to approximately 1 percent of the regulatory limit, and concentrations of airborne radioactive material measured in ambient air samples were below the applicable concentration levels for environmental compliance.
- Laboratory staff conducted more than 100 Hydrology Protocol assessments that covered almost 80 miles of streams. New Mexico Environment Department personnel participated in approximately half of the 2019 assessments. The purpose of the assessments is to determine which watercourses on Laboratory property are ephemeral, and which are intermittent, in order to better identify the appropriate surface water quality standards.
- The Laboratory conducted foodstuffs sampling from various locations around the Laboratory, in the surrounding communities, and from regional background locations. Foodstuffs samples were analyzed for radionuclides and inorganic elements (mostly metals). Foodstuffs produced by animals, such as milk and eggs, were also tested for PCBs. Based on this data, the dose from eating local or regional foodstuffs, including crops, eggs, milk, tea, deer, and elk, is well below 0.1 millirem per year. Radionuclide concentration in publicly available food is consistent with global fallout or naturally occurring material, and any contributions from the Laboratory are too small to measure.
- The 2019 biota dose assessment confirms previous assessments and shows that there are no harmful effects to the biota populations at LANL from Laboratory radioactive materials.

An additional summary of this report can be found in the Los Alamos National Laboratory Annual Site Environmental Report Summary. The full report and the summary are available on the Laboratory’s website: http://www.lanl.gov/environment/environmental-report.php.
This page intentionally blank.
Los Alamos National Laboratory (LANL, or the Laboratory) was established in 1943 as Project Y of the Manhattan Project, with the objective of designing and building the world’s first nuclear weapons. The Laboratory continues to operate today with a national security mission, surrounded by the diverse communities of northern New Mexico and employing approximately 12,000 people.

BACKGROUND AND PURPOSE

Background

In March 1943, a small group of scientists came to Los Alamos, New Mexico, for Project Y of the Manhattan Project. Their goal was to develop the world’s first nuclear weapon. By 1945—when the first nuclear bomb was tested at Trinity Site in southern New Mexico—more than 3,000 civilian and military personnel were working at Los Alamos Laboratory (Figure 1-1).

Figure 1-1. Entrance to Los Alamos Scientific Laboratory Technical Area 1, circa 1950

The Laboratory’s original mission to design, develop, and test nuclear weapons has broadened and evolved over time. The current mission is to solve national security challenges through scientific excellence.
The United States Atomic Energy Commission took ownership of Los Alamos Laboratory in 1946. In 1947, Los Alamos Laboratory became Los Alamos Scientific Laboratory. The U.S. Department of Energy (DOE) took ownership in 1977, and Los Alamos Scientific Laboratory became known as Los Alamos National Laboratory (LANL, or the Laboratory) in 1981. The National Nuclear Security Administration, a semi-autonomous agency within DOE, has overseen the management and operating contract for the Laboratory since 2000.

From 1943 through May 2006, the Laboratory was operated by the Regents of the University of California. In June 2006, Los Alamos National Security, LLC, took over the contract to manage and operate the Laboratory. They operated the Laboratory through 2018. In 2014, DOE decided to separate the cleanup of legacy waste from the management and operating contract at the Laboratory. The legacy waste cleanup work was transitioned to a bridge contract under DOE’s Office of Environmental Management in October 2015. A new contractor, Newport News Nuclear BWXT–Los Alamos, LLC (N3B), took over the legacy waste cleanup in April 2018. Triad National Security, LLC, was awarded the most recent management and operating contract for the Laboratory, and they took over managing the Laboratory in November 2018. Currently, both the National Nuclear Security Administration and the Office of Environmental Management maintain field offices in Los Alamos, New Mexico.

Purpose

This document serves as a consolidated site environmental report, fulfilling the annual reporting requirements of both the National Nuclear Security Administration and DOE’s Office of Environmental Management for the site under DOE Orders 231.1B Chg 1, Environment, Safety, and Health Reporting, and 458.1 Chg 3, Radiation Protection of the Public and the Environment. In this document, “we” refers to the people who work at Los Alamos National Laboratory, including employees of both DOE and contractor organizations.

As part of the Laboratory’s commitment to protecting the environment, we monitor and report on how Laboratory activities affect the environment. The objectives of this annual report are to

- characterize the site’s environmental performance, including effluent discharges, air emissions, environmental monitoring, and estimated radiological doses to the public from releases of radioactive materials;
- summarize environmental occurrences and responses;
- document compliance with environmental standards and requirements;
- highlight significant programs and efforts; and
- summarize property clearance activities.

The chapters in this report discuss our compliance with environmental laws, regulations, and orders (Chapter 2, Compliance Summary); how we manage the Laboratory’s environmental performance (Chapter 3, Environmental Programs); how we monitor for air emissions of radioactive materials and climatic conditions (Chapter 4, Air Quality); how we monitor for effects of Laboratory operations on groundwater quality (Chapter 5, Groundwater Protection); how we monitor the movement of chemicals and radionuclides by storm water runoff and the levels of chemicals and radionuclides in deposited sediment (Chapter 6, Watershed Quality); how we monitor for the presence, levels, and effects of chemicals and radionuclides in plants, animals, and soil (Chapter 7, Ecosystem Health); and finally, what radioactive dose or risk from chemical exposure members of the public may experience as a result of Laboratory operations (Chapter 8, Public Dose and Risk Assessment).
ENVIRONMENTAL SETTING

Location

Los Alamos National Laboratory is located in Los Alamos County, in north-central New Mexico, approximately 60 miles north-northeast of Albuquerque and 25 miles northwest of Santa Fe (Figure 1-2). The Laboratory is located on the Pajarito Plateau, a series of fingerlike mesas separated by canyons at the eastern edge of the Jemez Mountains. Mesa tops range in elevation from approximately 7,800 feet on the flanks of the Jemez Mountains on the western side to about 6,200 feet on the eastern side, at the edge of White Rock Canyon, which drops down to the Rio Grande. The Laboratory property is about 40 square miles, which includes areas with active operations and some additional DOE properties, such as a proposed land transfer tract in Rendija Canyon (labeled “DOE” in Figure 1-2). Most Laboratory-developed areas are on the mesa tops.

At the end of 2019, 12,558 people were employed by the primary contractors at the Laboratory, and an additional 1,014 people were employed by staff augmentation, protective force, and legacy waste cleanup subcontractors. The LANL-affiliated workforce resides predominantly in Los Alamos, Santa Fe, Rio Arriba, Bernalillo, Sandoval, and Taos counties and includes regular workers, temporary workers, and students.

New Mexico’s 2019 population was 2,096,826 people (Census 2020a), and the estimated population within a 50-mile radius of Los Alamos was 510,983 residents (CIESIN 2020). The counties with substantial land area within 50 miles of the Laboratory are Los Alamos, Santa Fe, Sandoval, and Rio Arriba. The estimated racial and ethnic composition of the population within these counties, based on data from the U.S. Census Bureau’s American Community Survey from 2014 through 2018, is shown in Table 1-1 (Census 2020b). Figure 1-2 shows the Laboratory’s location in the northern New Mexico region. Figure 1-3 shows municipalities and tribal properties within 50 miles of the Laboratory.

<table>
<thead>
<tr>
<th>Race</th>
<th>Number of People</th>
</tr>
</thead>
<tbody>
<tr>
<td>White alone</td>
<td>261,829</td>
</tr>
<tr>
<td>Black or African American alone</td>
<td>4,867</td>
</tr>
<tr>
<td>American Indian and Alaska Native alone</td>
<td>29,008</td>
</tr>
<tr>
<td>Asian alone</td>
<td>5,012</td>
</tr>
<tr>
<td>Some other race alone</td>
<td>35,179</td>
</tr>
<tr>
<td>Two or more races</td>
<td>11,454</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Number of People</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hispanic or Latino, of any race</td>
<td>161,724</td>
</tr>
<tr>
<td>Not Hispanic or Latino</td>
<td>185,625</td>
</tr>
</tbody>
</table>
Figure 1-2. Regional location of the Laboratory
Figure 1-3. Municipalities and tribal properties within a 50-mile radius of the Laboratory
The land surrounding the Laboratory is largely undeveloped, and large tracts of land north, west, and south of the Laboratory site are held by the Santa Fe National Forest, the U.S. Bureau of Land Management, Bandelier National Monument, and Los Alamos County. The townsites of Los Alamos borders the Laboratory to the north, and the townsites of White Rock borders it to the east. The Pueblo de San Ildefonso also borders the Laboratory to the east. Santa Clara Pueblo is north of the Laboratory but does not share a border (Figure 1-2).

Geology

Los Alamos National Laboratory lies along a continental rift called the Rio Grande Rift. Continental rifts result from tectonic plates in the Earth’s lithosphere moving apart. The rift allows magma to rise close to the earth’s surface, and volcanoes are a common feature of rifts. The Jemez Mountains are the remnant of a large collapsed volcanic field, and most of the rocks that make up the Pajarito Plateau are the products of volcanic eruptions.

The mesas of the Pajarito Plateau are mostly composed of Bandelier Tuff. Tuff is a type of soft rock that forms from volcanic ash. The Bandelier Tuff is more than 1,000 feet thick in the western part of the plateau and thins to about 260 feet thick on the eastern edge of the plateau above the Rio Grande.

On the western side of the Pajarito Plateau, the Bandelier Tuff overlaps the Tschicoma Formation of the Jemez Mountains. The Tschicoma Formation is an older rock layer of volcanic dacite. Eastward near the Rio Grande, a layer of sand and gravel that underlies the Bandelier Tuff, known as the Puye Formation, becomes visible in places. The Puye Formation is important in storing groundwater. Basalt rocks originating from the Cerros del Rio volcanos east of the Rio Grande mix with the Puye Formation along the river and extend beneath the Bandelier Tuff in places.

These rock formations all overlie the sediments of the Santa Fe Group, which extend between the Laboratory and the Sangre de Cristo Mountains and are more than 3,300 feet thick. The Santa Fe Group sediments are also important for groundwater storage.

Rifts are associated with faults in the earth. The modern rift boundary in the Los Alamos area consists of a local master fault and three subsidiary faults, known as the Pajarito fault zone. Past and present studies at the Laboratory investigate the earthquake hazards associated with these faults (Gardner et al. 1990, Larmat 2019).

Climate

Los Alamos County has a semi-arid climate, meaning that more water is lost from the soil and plants through evaporation and transpiration than is received as annual precipitation. Annual temperatures and amounts of precipitation differ across the area because of the 1,000-foot elevation change and the complex topography.

Four distinct seasons occur in Los Alamos County. Winters are generally mild, with occasional snowstorms. Spring is the windiest season. Summer is the rainy season, with frequent afternoon thunderstorms. Fall is typically dry, cool, and calm.

On average, winter temperatures range from 30 °F to 50 °F during the daytime and from 15 °F to 25 °F during the nighttime. The Sangre de Cristo Mountains to the east of the Rio Grande act as a barrier to
wintertime arctic air masses, making the occurrence of subzero temperatures rare. On average, summer temperatures range from 70 °F to 88 °F during the day and from 50 °F to 59 °F during the night.

From 1981 to 2010, the average annual precipitation (which includes both rain and the water equivalent of snow, hail, or any other frozen precipitation) was about 19 inches. The average annual snowfall was about 57 inches. The rainy season begins in early July and ends in early September. Afternoon thunderstorms form while moist air from the Pacific Ocean and the Gulf of Mexico lifts over the Jemez Mountains. Thunderstorms yield short, heavy downpours and an abundance of lightning. Local lightning density, among the highest in the United States, is estimated at 15 strikes per square mile per year.

The complex topography of the Pajarito Plateau influences local wind patterns. Daytime winds in the Los Alamos area are predominately from the south, as heated daytime air moves up the Rio Grande valley. Nighttime winds on the Pajarito Plateau are lighter and more variable than daytime winds and are typically from the west, a result of prevailing upper-level winds from the west and the downslope flow of cooled mountain air.

The climatology of Los Alamos County is summarized in Chapter 4, Air Quality, and explained further in Dewart et al. (2017).

Hydrology

Surface water on the Laboratory occurs primarily as ephemeral flow—associated with individual rain storms and lasting only a few hours to days—or intermittent flow, associated with events like snowmelt and lasting only a few days to weeks. Some springs on the edge of the Jemez Mountains supply water year-round to western sections of some canyons on Laboratory property, but the amount of water is not enough to maintain surface flows across the plateau to the eastern Laboratory boundary.

Groundwater in the Los Alamos area occurs in three modes: water in the near-surface sediments in the bottoms of some canyons (alluvial groundwater); water in underground porous rock layers underlain by a more solid rock layer and therefore perched above the regional aquifer (perched-intermediate groundwater); and the regional aquifer, located in saturated Santa Fe Group sediments.

The regional aquifer is the only aquifer in the area capable of serving as a municipal water supply. The source of most water added to the regional aquifer appears to be rain and snow that fall on the Jemez Mountains. A secondary source is local infiltration of water in canyon bottoms on the Pajarito Plateau (Birdsell et al. 2005). The upper portion of the regional aquifer beneath the Laboratory discharges into the Rio Grande through the springs in White Rock Canyon.

Biological Resources

The Pajarito Plateau is very biologically diverse, partly because of the dramatic 5,000-foot elevation change from the Rio Grande up to the top of the Jemez Mountains and partly because of the many steep canyons that dissect the area. The major types of vegetative cover in this area include the following: (1) one-seed juniper (*Juniperus monosperma*) savannas along the Rio Grande on the eastern border of the plateau, extending upward on the south-facing sides of canyons at elevations between 5,600 and 6,200 feet; (2) juniper woodlands with scattered piñon (*Pinus edulis*) trees, generally between 6,200 and 6,900 feet in elevation and covering large portions of the mesa tops and north-facing canyon slopes at the lower elevations; (3) ponderosa pine (*Pinus ponderosa*) woodlands on the western portion of the plateau at between 6,900 and 7,500 feet in elevation; and (4) mixed-conifer woodlands and
forests at elevations of 7,500 to 9,500 feet, overlapping the ponderosa pine community both in the
deep canyons and on north-facing canyon slopes and extending onto the slopes of the
Jemez Mountains. Local wetland and riparian areas enrich the diversity of plants and animals found on
the plateau.

The frequent drought conditions occurring throughout New Mexico since 1998 have resulted in the loss
of many forest and woodland trees. Between 2002 and 2005, more than 90 percent of the mature piñon
trees in the Los Alamos area died from a combination of drought stress and bark beetle infestation
(Breshears et al. 2005). Large numbers of mature ponderosa pine and other conifer trees in the area
have also died. This mortality of forest trees is projected to continue into the 2050s (Williams et al.
2013).

Two major wildfires have also affected the Laboratory: the Cerro Grande fire in 2000 and the Las
Conchas fire in 2011. Both fires resulted in loss of forest trees on the slopes of the Jemez Mountains
west of the Laboratory and were followed by large flash floods that caused extensive soil erosion and
some damage to infrastructure. A 1,000-year storm event in September 2013 also resulted in flooding
and damage.

Cultural Resources

The Pajarito Plateau is an archaeologically complex region. Surveys of approximately 90 percent of the
DOE land in Los Alamos County have identified more than 1,800 prehistoric and historic cultural sites.
Nearly 79 percent of the sites were constructed and used by Ancestral Pueblo people during the
thirteenth, fourteenth, and fifteenth centuries. However, there is evidence of human activity on this
landscape from the Paleoindian Period (16,000–8,000 BC) through the Historic Period (seventeenth
century–present). Cultural resource specialists at the Laboratory document and evaluate these cultural
sites for their eligibility in the National Register of Historic Places.

The Laboratory itself is also associated with events of national significance in recent history. We have
evaluated more than 300 buildings and structures at the Laboratory used during the Manhattan Project
and Cold War historical periods (1943–1990) for listing in the National Register of Historic Places. Of
these, 171 buildings have been declared eligible.

Established in 2014, the Manhattan Project National Historical Park, managed by the National Park
Service, includes units at Hanford, Washington; Oak Ridge, Tennessee; and Los Alamos. Nine buildings
associated with the design and assembly of Gadget (the atomic bomb tested at Trinity Site), the Little
Boy weapon (the atomic bomb detonated over Hiroshima, Japan), and the Fat Man weapon (the atomic
bomb detonated over Nagasaki, Japan) are currently part of the Manhattan Project National Historical
Park at Los Alamos National Laboratory. Eight additional Laboratory buildings and structures, identified
in the park legislation, are considered eligible properties for inclusion in the Park.

LABORATORY ACTIVITIES AND FACILITIES

The mission of the Laboratory is to solve national security challenges through scientific excellence. The
current goals of the Laboratory are to: (1) deliver national nuclear security and broader global security
mission solutions; (2) attract, inspire, and develop world-class talent to ensure a vital future workplace;
(3) foster excellence in science and engineering disciplines essential for national security missions; and
(4) enable mission delivery through next-generation facilities, infrastructure, and operational excellence. Mission focus areas include

- nuclear deterrence and stockpile stewardship;
- protecting against nuclear threats;
- emerging threats and opportunities; and
- energy security solutions.

The Laboratory property is organized into 49 technical areas that contain buildings, experimental areas, support facilities, roads, and utility rights-of-way (Figure 1-4 and Appendix C, Descriptions of Technical Areas and their Associated Programs). Developed areas account for less than half of the total land area; many portions of the Laboratory act as buffer areas for security, safety, and possible future expansion. The Laboratory has about 904 permanent buildings and temporary structures, with approximately 8.2 million square feet under roof (LANL 2019). Areas of the Laboratory undergoing legacy waste cleanup activities are administratively controlled by the DOE’s Office of Environmental Management.

In May 2008, the DOE/National Nuclear Security Administration issued a site-wide environmental impact statement for continued operation of the Laboratory (DOE 2008). In the 2008 Site-Wide Environmental Impact Statement, the Laboratory identified 15 facilities as being key for evaluating the potential environmental impacts of continued operation (Table 1-2). Activities in the key facilities represent the majority of environmental impacts associated with Laboratory operations.

Table 1-2. Key Facilities

<table>
<thead>
<tr>
<th>Facility</th>
<th>Technical Area(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plutonium Facility Complex</td>
<td>55</td>
</tr>
<tr>
<td>Chemistry and Metallurgy Research (CMR) Building</td>
<td>03</td>
</tr>
<tr>
<td>Sigma Complex</td>
<td>03</td>
</tr>
<tr>
<td>Materials Science Laboratory (MSL)</td>
<td>03</td>
</tr>
<tr>
<td>Target Fabrication Facility</td>
<td>35</td>
</tr>
<tr>
<td>Machine Shops</td>
<td>03</td>
</tr>
<tr>
<td>Nicholas C. Metropolis Center for Modeling and Simulation</td>
<td>03</td>
</tr>
<tr>
<td>High Explosives Processing (HEP) Facilities</td>
<td>08, 09, 11, 16, 22, 37</td>
</tr>
<tr>
<td>High Explosives Testing (HET) Facilities</td>
<td>14, 15, 36, 39, 40</td>
</tr>
<tr>
<td>Los Alamos Neutron Science Center (LANSCE)</td>
<td>53</td>
</tr>
<tr>
<td>Biosciences Facilities (formerly Health Research Laboratory)</td>
<td>03, 16, 35, 43, 46</td>
</tr>
<tr>
<td>Radiochemistry Facility</td>
<td>48</td>
</tr>
<tr>
<td>Radioactive Liquid Waste Treatment Facility (RLWTF)</td>
<td>50</td>
</tr>
<tr>
<td>Solid Radioactive and Chemical Waste Facilities</td>
<td>50, 54</td>
</tr>
<tr>
<td>Weapons Engineering Tritium Facility (WETF)</td>
<td>16</td>
</tr>
</tbody>
</table>

The remaining Laboratory facilities were identified as non-key facilities, examples of which include the Nonproliferation and International Security Center; the National Security Sciences Building, which is the main administration building; and the Technical Area 46 sewage treatment facility.
See Table 1-2 for acronym definitions.

Figure 1-4. Technical Areas (TAs) and key facilities of the Laboratory in relation to surrounding landholdings.
In April 2018, the DOE/National Nuclear Security Administration published a supplement analysis that reviewed changes at the Laboratory and evaluated the adequacy of the 2008 Site-Wide Environmental Impact Statement for LANL operations during 2018–2022 (DOE 2018). The supplement analysis indicated that the environmental impacts that occurred during 2008–2017 and those projected for 2018–2022 have not substantially changed from the impacts that were projected in the Site-Wide Environmental Impact Statement Record of Decisions and are bounded by the analyses presented in the 2008 Site-Wide Environmental Impact Statement.
REFERENCES

This page intentionally blank.
Compliance with environmental laws and orders is part of Los Alamos National Laboratory’s (LANL, or the Laboratory) environmental stewardship. This chapter summarizes the Laboratory’s 2019 compliance with laws and orders, such as permit conditions and limits, inspections, notices of violations, occurrences, and accomplishments. A list of the Laboratory’s environmental permits for operations is provided at the end of the chapter. The following provides a partial list of the environmental laws and orders that apply to the Laboratory:

Radiation Protection
- DOE Order 458.1, *Radiation Protection of the Public and the Environment*
- Clean Air Act – *Radionuclide National Emission Standards for Hazardous Air Pollutants*

Waste Management
- DOE Order 435.1, *Radioactive Waste Management*
- Resource Conservation and Recovery Act
- 2016 Compliance Order on Consent
- Federal Facility Compliance Act

Air Quality
- Clean Air Act
- New Mexico Air Quality Control Act

Water Quality
- Clean Water Act
- New Mexico Water Quality Act
- 2016 Compliance Order on Consent
- Energy Independence and Security Act

Natural and Cultural Resources
- National Environmental Policy Act
- National Historic Preservation Act
- Endangered Species Act
- Migratory Bird Treaty Act
- Floodplain, Wetland, and Invasive Species Executive Orders

Other Environmental Protections
- Toxic Substances Control Act
- Federal Insecticide, Fungicide, and Rodenticide Act
- New Mexico Pesticide Control Act
- DOE Order 231.1B, *Environment, Safety, and Health Reporting*
- DOE Order 231.2, *Occurrence Reporting and Processing of Operations Information*
- Emergency Planning and Community Right-to-Know Act
- DOE Order 436.1, *Departmental Sustainability*
INTRODUCTION

Environmental laws are designed to protect human health and the environment by

• regulating the handling, transportation, and disposal of materials and wastes;
• regulating detrimental impacts to biological and cultural resources, air, and water; and
• requiring analysis of the environmental impacts of new operations.

This chapter summarizes the Laboratory’s compliance with state and federal environmental regulations and permits and Department of Energy (DOE) environmental orders, including inspections, notices of violations, occurrences, and accomplishments.

RADIATION PROTECTION

DOE Order 458.1 Chg 3, Radiation Protection of the Public and the Environment

DOE Order 458.1 directs DOE facilities to keep radiological doses to the public and the environment as low as reasonably achievable and to monitor for routine and nonroutine releases of radioactive materials. The order requires DOE sites to do the following:

• Ensure the radiological dose to the public as a result of their activities does not exceed 100 millirem in any given year.
• Comply with the order’s dose limits for wildlife and plants.
• Notify the public about any radiation doses resulting from operations.
• Use radiological limits authorized by DOE to evaluate property that has the potential to contain residual radioactivity (e.g., surplus equipment, waste shipped for disposal offsite, or land parcels transferred to new owners) before releasing it to ensure that the dose does not exceed 25 millirem per year above background for real estate or 1 millirem per year above background for moveable items.

Estimated Maximum Possible Radiological Dose to the Public

During 2019, the estimated maximum radiological dose to a member of the public from Laboratory operations was less than 1 millirem. Radiation doses to wildlife and plants were below the annual DOE dose limits (Whicker et al. 2020). Chapter 8 provides details of the Laboratory’s annual radiological dose estimates for the public, and Chapter 7 presents dose estimates for wildlife and plants.

Property Released from the Laboratory

Real Estate

A land parcel, Tract A-16-b (about six acres adjacent to DP Canyon), was conveyed to Los Alamos County in 2019 (LANL 2016a).

Recycled Metals

Metals exposed to ionizing radiation during Laboratory operations are evaluated for release before recycling. About 826 tons of metal were recycled in 2019. Much of that amount was from the Los Alamos Neutron Science Center’s accelerator. About 76 tons were released from activities associated with the legacy waste cleanup program at Technical Area 21.
Releases from the Los Alamos Neutron Science Center were evaluated by following the protocol outlined in the Multi-Agency Radiation Survey and Assessment for Materials and Equipment manual and were independently reviewed by DOE. Releases from Technical Area 21 met the criteria for unrestricted radiological release under Title 10, Part 835 of the Code of Federal Regulations, *Occupational Radiation Protection*, and DOE Order 458.1.

Personal Property Items

Laboratory personnel survey and release smaller personal property items (e.g., tools and furniture) from radiologically controlled areas on an on-demand basis. These items typically remain onsite and, once cleared, have no restrictions. The policies and procedures for releasing these items comply with Title 10, Part 835 of the Code of Federal Regulations, *Occupational Radiation Protection*.

N3B (the Laboratory’s legacy waste cleanup contractor) surveyed and released personal property throughout 2019 as part of ongoing environmental remediation and waste packaging and shipping operations. Leased equipment was also routinely surveyed and released from N3B-controlled environmental sites. Within Technical Area 54, 643 government and nongovernment vehicles and motorized equipment were surveyed and released from radiologically controlled areas. Dome skin fabric removed from storage dome 230 during a reskinning project was surveyed, released, and shipped to an industrial waste landfill approved to receive that type of waste for disposal.

Establishment and Use of Authorized Limits

Screening action levels for radionuclides in soils are evaluated every year to determine if an update is needed. In 2016, recalculation of the screening action levels was needed (1) due to a significant update to version 7.0 of the dose assessment code RESRAD (Yu et al. 2001) and (2) to apply “reference person” dosimetry (LANL 2016b). The Laboratory requested that DOE evaluate the new soil-screening action levels for use as authorized limits for land conveyance and transfer, and these values were approved in early 2017. There were no updates to the screening action levels in 2019. These authorized limits were used in the transfer of Tract A-16-b.

WASTE MANAGEMENT SUMMARY

Management of wastes generated by Laboratory operations is a crucial component of compliance with environmental laws and is discussed in the next several sections. The following callout provides an explanation of some waste types.
Table 2-1 summarizes radiological and some hazardous wastes generated at the Laboratory and the current disposal pathways of such waste.

Table 2-1. LANL Waste Types and Disposal Methods

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Method for Disposal</th>
<th>2019 Disposal Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Transuranic Waste and Solid Mixed Transuranic Waste</td>
<td>The Laboratory sends solid transuranic and mixed transuranic wastes offsite to the Waste Isolation Pilot Plant in Carlsbad, New Mexico, when the transuranic or mixed transuranic waste meets the plant’s waste acceptance criteria. Some transuranic and mixed transuranic waste is stored at the Laboratory while waiting for an acceptable disposal pathway to be identified. In 2019, LANL waste was also shipped from long-term storage at Waste Control Specialists (Andrews County, Texas) to the Waste Isolation Pilot Plant for disposal.</td>
<td>8,270 cubic yards (6,322.5 cubic meters) from LANL; 4 cubic yards (3.1 cubic meters) from Waste Control Specialists in Andrews County, Texas</td>
</tr>
<tr>
<td>Solid Low-level Radioactive Waste</td>
<td>The Laboratory sends solid low-level radioactive waste offsite to licensed treatment, storage, and disposal facilities. These sites include the Nevada Nuclear Security Site, operated by the DOE, and commercial facilities operated by Energy Solutions (Clive, Utah); Perma-Fix Northwest, Inc. (Richland, Washington), and Waste Control Specialists (Andrews County, Texas).</td>
<td>48,957 cubic yards (37,431 cubic meters)</td>
</tr>
<tr>
<td>Liquid Radioactive Waste</td>
<td>The Laboratory treats liquid radioactive waste onsite at the Radioactive Liquid Waste Treatment Facility in Technical Area 50. The treated water is either evaporated or released at permitted Outfall 051.</td>
<td>694,982 gallons</td>
</tr>
<tr>
<td>Solid Hazardous Waste</td>
<td>The Laboratory sends solid hazardous waste offsite for treatment and disposal at licensed treatment, storage, and disposal facilities. In 2019, these facilities included Veolia North America (Henderson, Colorado) and Clean Harbors (Clive, Utah).</td>
<td>150 tons</td>
</tr>
<tr>
<td>Solid Mixed Low-Level Waste</td>
<td>The Laboratory sends solid mixed low-level waste offsite to licensed treatment, storage, and disposal facilities. In 2019, these facilities included Energy Solutions (Clive, Utah), Perma-Fix of Florida, Inc. (Gainesville, Florida), and Waste Control Specialists (Andrews County, Texas). Some mixed low-level waste is treated at one of the licensed treatment, storage, and disposal facilities to meet land-disposal restrictions and is then disposed of at the Nevada Nuclear Security Site.</td>
<td>6,108 cubic yards (4,670 cubic meters)</td>
</tr>
</tbody>
</table>

What are the types of radioactive waste?

Transuranic Waste – Waste is classified as transuranic waste when the activity of alpha-emitting transuranic radionuclides with half-lives of 20 years or more (such as plutonium, cesium, and strontium) is greater than 100 nanocuries per gram of waste.

Mixed Transuranic Waste – Mixed transuranic waste is transuranic waste along with at least one waste defined as hazardous under the Resource Conservation and Recovery Act.

Low-Level Waste – Low-level radiological waste contains added radioactivity, but does not contain high-level waste (the highly radioactive waste resulting from the reprocessing of spent nuclear fuel, transuranic waste, or tailings from the milling of uranium or thorium ore). It also does not contain any waste defined as hazardous under the Resource Conservation and Recovery Act.

Mixed Low-Level Waste – Mixed low-level waste is low-level waste along with at least one waste defined as hazardous under the Resource Conservation and Recovery Act.
Waste Type

<table>
<thead>
<tr>
<th>Waste Type</th>
<th>Method for Disposal</th>
<th>2019 Disposal Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Nonhazardous Waste</td>
<td>The Laboratory sends sanitary solid waste, construction debris, and demolition debris to the Los Alamos County Eco Station for transfer to municipal landfills such as the municipal waste landfill in Rio Rancho, New Mexico. Los Alamos County operates this transfer station and is responsible to the State of New Mexico for obtaining all related permits for these activities. The Laboratory also sends solid nonhazardous waste to regional facilities in Arizona and Colorado.</td>
<td>2,727 tons</td>
</tr>
<tr>
<td>Liquid Sanitary Waste</td>
<td>The Laboratory treats liquid sanitary waste onsite at the Sanitary Waste Water Treatment Plant. Treated water is reused in Laboratory cooling towers and is released at permitted Outfall 001.</td>
<td>1,249,214 gallons</td>
</tr>
<tr>
<td>PCB Wastes*</td>
<td>Waste containing polychlorinated biphenyls (PCBs), including fluorescent light ballasts and contaminated soils, was sent to U.S. Environmental Protection Agency-authorized treatment and disposal facilities, including Clean Harbors (Clive, Utah) and Veolia North America (Henderson, Colorado).</td>
<td>358 tons</td>
</tr>
<tr>
<td>Asbestos Waste</td>
<td>Asbestos-containing waste is deposited at any of several waste disposal sites operated in accordance with Title 40, Part 61, Section 154 of the Code of Federal Regulations.</td>
<td>88 tons</td>
</tr>
</tbody>
</table>

*This total includes waste containing only PCBs. If a waste with PCBs also contains hazardous or low-level waste, the weight of that waste is captured in the other category.

RADIOACTIVE WASTES

DOE Order 435.1 Chg 1, Radioactive Waste Management

Laboratory operations that use nuclear materials generate four types of radioactive wastes: low-level radioactive waste (also called low-level waste), mixed low-level waste, transuranic waste, and mixed transuranic waste. Radioactive waste generated during Laboratory operations must (1) meet Laboratory onsite storage requirements and (2) meet requirements for transportation to and disposal at a final facility. All facets of radioactive waste generation, storage, and disposal are regulated by DOE Order 435.1 Chg 1, Radioactive Waste Management, and DOE Manual 435.1-1.

Onsite Low-Level Radioactive Waste Disposal

Material Disposal Area G at Technical Area 54 (Area G) is the only active waste disposal facility at the Laboratory. Operations began at Area G in 1957 and included the disposal of low-level radioactive waste, certain infectious waste containing radioactive materials, asbestos-containing material, PCBs, and temporary storage of transuranic waste. Mixed low-level waste and mixed transuranic waste have been stored in surface structures at Area G. The capacity to dispose of low-level waste at Area G is very limited; waste is accepted for disposal only under special circumstances and with prior authorization. In 2019, the Laboratory did not dispose of any low-level waste in Area G. The Laboratory used 2,337 cubic yards (1,787 cubic meters) of inert material for fill.

Planning for the closure of Area G has been underway since 1992. Under the 2016 Compliance Order on Consent, the Laboratory is working with the New Mexico Environment Department Hazardous Waste Bureau to develop and implement corrective measures for solid waste management units at Area G. Environmental monitoring at Area G currently includes (1) a direct radiation thermoluminescent dosimeter monitoring network (Chapter 4); (2) an environmental air-station monitoring network
(Chapter 4); (3) a groundwater monitoring network (Chapter 5); and (4) periodic soil, vegetation, and small mammal sampling (Chapter 7). Table 2-2 provides the 2019 status of DOE’s low-level waste disposal facility management process for Area G.

Table 2-2. DOE Low-Level Waste Disposal Facility Management Status for Area G

<table>
<thead>
<tr>
<th>Management Process Phase</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Assessment/Composite Analysis</td>
<td>Revision 4 was approved in 2009 (LANL 2008). The annual determination of adequacy for fiscal year 2019 was published in March 2020.</td>
</tr>
<tr>
<td>Closure Plan</td>
<td>Plan issued in 2009 (LANL 2009).</td>
</tr>
<tr>
<td>Disposal Authorization Statement</td>
<td>Revision 2 was issued November 15, 2018. This revision identifies the DOE Environmental Management field office in Los Alamos as the responsible field office.</td>
</tr>
</tbody>
</table>

HAZARDOUS WASTES

Resource Conservation and Recovery Act

The Resource Conservation and Recovery Act regulates hazardous wastes from generation to disposal. Hazardous wastes include all solid wastes that are (1) listed as hazardous by the U.S. Environmental Protection Agency; (2) ignitable, corrosive, reactive, or toxic; (3) batteries, pesticides, lamp bulbs, or solids that contain mercury; and (4) a hazardous waste as listed above that has been mixed with a radiological waste (mixed waste). Under the Resource Conservation and Recovery Act, facilities must obtain a permit from their regulatory authority before they treat, store, or dispose of hazardous wastes.

The State of New Mexico is authorized by the U.S. Environmental Protection Agency to issue and enforce hazardous waste facility permits. On November 8, 1989, the New Mexico Environment Department issued the first LANL Hazardous Waste Facility Permit to store and treat hazardous waste at the Laboratory. The Laboratory’s Hazardous Waste Facility Permit establishes the standards for LANL’s management of hazardous wastes. The permit allows for the storage and sometimes treatment of hazardous waste at 27 separate hazardous waste management units (sites) at the Laboratory. It also provides specific reporting requirements to the New Mexico Environment Department and to the public. The permit is issued to DOE and its field offices (the National Nuclear Security Administration Los Alamos Field Office and the DOE-Environmental Management Los Alamos Field Office), along with the management and operating contractor Triad and the legacy waste cleanup contractor N3B.

What do these waste terms mean?

Treatment – Waste treatment is any process that changes the physical, chemical, or biological characteristics of a waste to minimize its threat to the environment.

Storage – Waste storage is the temporary holding of waste before the waste is treated, disposed of, or stored somewhere else. A storage unit stores hazardous waste. Examples of such units include tanks, containers, drip pads, and containment buildings.

Disposal – Waste disposal is the discharge, deposit, injection, or placing of any waste on or in the land or water. A disposal facility is any site where the waste is intentionally placed and where it will remain.

Remediated Waste – Waste that has undergone treatment.
Permit Modifications, Reports, and Other Activities

The Hazardous Waste Facility Permit sometimes needs modification to address new information, changes in a facility, or changes in regulatory requirements. Notices of permit modification approvals are mailed to members of the public who sign up for a LANL facility mailing list maintained by the New Mexico Environment Department.

In 2019, the Laboratory submitted four permit modification requests. All four were Class I modifications, which are minor changes that keep a permit current with routine changes to the facility or its operations. The four permit modification requests involved routine changes associated with (1) modifying unit structures, descriptions, and figures; (2) adding allowances for hazardous waste generators; and (3) managing the listing of Solid Waste Management Units and Areas of Concern covered in the permit.

The New Mexico Environment Department approved five Class I permit modifications, and one final closure plan was issued in 2019.

- In January 2019, the New Mexico Environment Department approved the request to add a new waste-stream description to the Permit Attachment C-Waste Analysis Plan.
- In January 2019, the New Mexico Environment Department issued a final closure plan for an open burning treatment unit at Technical Area 16.
- In February 2019, the New Mexico Environment Department approved a request to update Attachment K of the Hazardous Waste Permit. One Solid Waste Management Unit was added to Table K-1, and one Area of Concern was removed from Table K-3 and added to Table K-1.
- In June 2019, the New Mexico Environment Department approved a request to update descriptions of emergency equipment and organizational names throughout the permit.
- In August 2019, the New Mexico Environment Department approved a request to update the Environmental Protection Agency 877-12 (Part A) Form in Permit Attachment B to include exemptions for generators and add aerosol cans as a universal waste.
- In August 2019, the New Mexico Environment Department approved a request to update the permit to add a support structure at Technical Area 54, Area G, Pad 11.

The management and operating contractor, in coordination with the legacy waste cleanup contractor, sent demolition activity notifications to the New Mexico Environment Department for the 2019 quarters ending in June, September, and December. One fiscal year 2019 notification was also sent for the Laboratory, covering all relevant demolition activities from October 1, 2018, to September 30, 2019. The fiscal year notification was submitted to the New Mexico Environment Department, along with the December 2019 quarterly report.

In 2019, there were two emergency treatment events approved under the New Mexico Hazardous Waste Act. The first authorized the destruction of a small container with a suspected unstable chemical. The second approval was for destruction of ten containers with suspected unstable chemicals. In December 2019, in anticipation of the permit renewal application for the LANL Hazardous Waste Facility Permit, an informational public meeting was held to solicit questions from the community and to inform the community of proposed waste management activities.
Inspections, Noncompliances, and Notices of Violation

The Laboratory provides advance written notice to the New Mexico Environment Department of any changes to any permitted unit or activity that may result in a noncompliance with the permit. The Laboratory also provides verbal and written reports of any noncompliance that may endanger human health or the environment when a noncompliance is discovered. Instances of noncompliance that do not threaten human health or the environment, such as exceeding a storage holding time, are compiled and reported annually to the New Mexico Environment Department.

During the reporting period (October 1, 2018, through September 30, 2019), there was one release at or from a permitted unit under operational control of Triad. On September 12, 2019, at the Technical Area 55 High-Efficiency Neutron Counting pad, a battery was overfilled during routine maintenance. Subsequent charging expanded the battery acid, causing it to overflow the battery. The spilled material (less than one quart) had a pH of 0 to 1. Emergency personnel responded and cleaned the area by neutralizing and then absorbing the spilled material. The subsequent waste generated from cleanup activities was placed in a container and compliantly managed.

Individual notices or reports of noncompliance with the Hazardous Waste Facility Permit during fiscal year 2019 were sent to the New Mexico Environment Department in letters dated as follows:

- December 10, 2018, Request for Extension of the One-Year Storage Limit at the Los Alamos National Laboratory, Technical Area 54, Area L (EPC-DO: 18-422/LA-UR-18-30935)

In November 2019, the Laboratory submitted the fiscal year 2019 noncompliance report to the New Mexico Environment Department. The Laboratory reported 48 instances of noncompliance with the LANL Hazardous Waste Facility Permit. Reported instances included failure to fix deterioration or malfunction of equipment or structures; eyewash, safety shower, and/or fire extinguishers out of inspection; container labeling issues; inadequate aisle spacing; missed inspections; shipment operating-record differences for drums that had already been shipped to the Waste Isolation Pilot Plant; and failure to store hazardous waste for less than one year. Other instances of noncompliance were associated with delayed posting of correspondence to the LANL Public Reading Rooms and delayed email notifications to individuals on the LANL facility mailing list. Abovementioned instances of noncompliance were identified by management and operating contractor Triad through internal site-wide compliance assessments conducted by hazardous waste management experts. N3B personnel conducted weekly inspections to identify noncompliance with the permit in the legacy waste cleanup program.

On December 17, 2018, a notice of violation was issued to the Laboratory for storing hazardous waste for greater than one year. On April 3, 2019, a settlement agreement was finalized with a penalty of $61,750.

A notice of violation was issued on November 8, 2018, for (1) failure to notify the New Mexico Environment Department within three days of a hazardous waste characterization discrepancy, (2) failure to determine that a solid waste was a hazardous waste, and (3) failure to properly complete a
hazardous waste manifest. A settlement agreement was reached on March 31, 2019, for a penalty of $54,750.

On March 27, 2019, a notice of violation was issued to the Laboratory, with no associated penalties, citing damage to domes at Technical Area 54. The New Mexico Environment Department determined that part of the violation cited in the notice was adequately addressed but required monthly updates documenting progress of the repairs to the dome.

A final notice of violation during fiscal year 2019 was issued to the Laboratory on August 20, 2019, along with a notice of proposed penalties. This notice cited 16 violations noted during an inspection by the New Mexico Environment Department conducted from April 29, 2019, through May 2, 2019. The New Mexico Environment Department determined that the violations cited in the notice were adequately addressed and that no further action was required. The New Mexico Environment Department, the DOE field offices, the management and operations contractor, and the legacy waste cleanup contractor filed a final settlement agreement with a penalty assessed at $153,938 on December 24, 2019.

N3B implemented corrective actions to address items identified in a Notice of Violation issued on August 20, 2019, from the New Mexico Environment Department and to more broadly evaluate and address the extent of condition and causes to minimize the potential for recurrence. Laboratory personnel continue to develop and improve waste management tools and processes to facilitate compliance with recordkeeping requirements in the permit. They also work with waste-handling personnel and waste management personnel to identify and implement corrective actions that will prevent recurrences of other types of noncompliance.

Settlement Agreement and Stipulated Final Order

On January 22, 2016, the National Nuclear Security Administration (NNSA), Los Alamos National Security, and the State of New Mexico signed a Settlement Agreement to resolve potential penalties associated with a drum of transuranic waste that contributed to the 2014 contamination event at the Waste Isolation Pilot Plant. The settlement agreement includes five supplemental environmental projects, which NNSA and the Laboratory implemented. Below are the 2019 activities on the supplemental environmental projects.

1. Road Improvement Project – Improve routes at the Laboratory used to transport transuranic waste to the Waste Isolation Pilot Plant.

 The U.S. Army Corps of Engineers selected a design engineering firm to manage the redesign of the intersection between State Route 4 and East Jemez Road. The selected firm, Bohannon Houston, developed five options to redesign the intersection. An integrated project team reviewed all five designs and selected a preferred concept. This team consisted of representatives from the County of Los Alamos, the County of Santa Fe, the New Mexico Department of Transportation, the National Park Service, the National Nuclear Security Administration, and the Pueblo de San Ildefonso. Bohannon Houston submitted a cost estimate to complete the design and construction. The design was completed in August 2019. Funding for the intersection construction is being pursued.

2. Triennial Review Project – Conduct an independent, external triennial review of environmental regulatory compliance and operations.
In accordance with the January 2016 Settlement Agreement and Stipulated Final Order, NNSA and the Laboratory agreed to conduct independent, external triennial reviews of environmental regulatory compliance and operations at LANL. The first triennial review was conducted in 2018, with the final report issued on September 14, 2018. A second triennial review will be conducted in 2021, and a final report will be issued in September 2021.

3. Watershed Enhancement Project – Design and install engineering structures in and around the Laboratory to reduce storm water velocity and decrease sediment load to improve water quality in the area. This project includes a Low Impact Development Master Plan for the Laboratory (LANL 2017a).

The Laboratory coordinated construction on the main gate entry storm water pond with the Potable Water Line Replacement Project activities (see list item 5 below). The project was certified to the New Mexico Environment Department in April 2019. However, additional work on the Potable Water Line Replacement Project in this area postponed final completion to December 2019.

Construction on the upper Cañon de Valle project began in September 2018, and this project was completed and certified to the New Mexico Environment Department in April 2019. The La Mesita East Low Impact Development Project at Technical Area 53 was completed in November 2019, and it was certified to the New Mexico Environment Department in December 2019.

The mid-Mortandad watershed project design was completed in April 2018, and construction activities began in October 2018. Due to weather and other construction delays, work is scheduled for completion in early 2020.

Two of the five additional storm water low-impact development projects, Technical Area 53 La Mesita Swale and Technical Area 53 East La Mesita Drive, were completed in November 2019, and the project was certified by the New Mexico Environment Department in December 2019.

4. Surface Water Sampling Project – Conduct targeted sampling for sediment, storm water runoff, atmospheric deposits, and aquatic life in watersheds in and around the Laboratory to better understand surface water quality and stream-reach characteristics in the region. Share these results with the public and the New Mexico Environment Department.

All storm water sampling was completed in 2018. During 2019, personnel collected samples of aquatic life from stream reaches in six watersheds in and around the Laboratory.

Laboratory personnel evaluated four locations in and around the Laboratory using the New Mexico Environment Department’s Hydrology Protocol Level 2 Criteria (New Mexico Environment Department 2011). The Hydrology Protocol distinguishes between ephemeral, intermittent, and perennial stream reaches and documents the uses supported by those waters.

5. Potable Water Line Replacement Project – Replace aging potable water lines and install metering equipment for Laboratory potable water systems.

In 2019 the Laboratory completed construction of the Phase A and B waterlines, including installation of the meters, air-relief valves, and pressure relief valves. The lines are completely operational, and the only remaining activities are to cut and cap four locations of the old line, finish site restoration, and complete asphalt and concrete repair and replacement.
The 2016 Compliance Order on Consent

A settlement agreement between the New Mexico Environment Department and DOE, the 2016 Compliance Order on Consent (modified in 2017; available at https://www.env.nm.gov/hazardous-waste/lanl/) addresses cleanup of legacy wastes. It supersedes the Compliance Order on Consent issued in 2005. The order guides and governs ongoing cleanup of legacy waste by N3B at the Laboratory through an annual work-planning process. Campaigns are planned using risk-based criteria to group, prioritize, and implement corrective actions. The annual planning process allows for revisions to cleanup campaigns based on actual work progress, changed conditions, and funding.

The Laboratory has two types of legacy waste corrective action sites: (1) Solid Waste Management Units and (2) Areas of Concern. Solid Waste Management Units are areas where solid wastes were spilled or disposed of. Examples of these units include certain septic tanks, firing sites, landfills, sumps, and areas that historically received liquid effluents from outfalls. Areas of Concern are areas that may have received a hazardous waste or hazardous constituents through soil movement or the flow of liquid wastes from Laboratory facilities. Examples include canyon bottoms downstream from historical outfalls.

As of October 1, 2019, the Laboratory had 1,405 corrective action sites listed in Appendix A of the 2016 Compliance Order on Consent. During fiscal year 2019, one site received a certificate of completion with controls, 31 sites received certificates of completion without controls, and no sites were changed to a deferred status. Therefore, at the end of fiscal year 2019, 85 corrective action sites had certificates of completion with controls, 272 had certificates of completion without controls, and 134 sites were deferred until they no longer have active operations. The remaining 914 Solid Waste Management Units and Areas of Concern had investigations or corrective actions (or both) either in progress or pending.

The Compliance Order on Consent also addresses remediation of groundwater containing contaminants resulting from Laboratory operations. Groundwater remediation activities are discussed in detail in Chapter 5, Groundwater Protection.

During the fiscal year, the Laboratory submitted the following documents to the New Mexico Environment Department Hazardous Waste Bureau as part of the Consent Order deliverables:

- six investigation reports,
- eight Periodic Monitoring Reports for five monitoring groups,
- an annual update on the Integrated Facility Groundwater Monitoring Program,
- an annual update for Los Alamos/Pueblo Canyons Sediment Monitoring,
- one report on the Sandia Canyon wetlands performance,
- two biennial erosion control inspection reports,
- two progress letter reports for investigation work completed under the Consent Order, and
- a Corrective Measures Study/Corrective Measures Implementation progress report.

Federal Facility Compliance Act

The Federal Facility Compliance Act requires federal facilities that generate or store mixed radioactive and hazardous wastes to submit a Site Treatment Plan that includes a schedule to develop treatment capacities and technologies to treat all the facility’s mixed waste. In October 1995, the State of New Mexico issued a Federal Facility Compliance Order to the Laboratory requiring a Site Treatment Plan for mixed radioactive and hazardous wastes.
While identifying treatment and disposal options for the mixed waste inventory, the Laboratory’s Site Treatment Plan allows the Laboratory to store accumulated mixed waste at permitted storage units for more than one year. Such storage is otherwise prohibited by the Land Disposal Restrictions provision of the Resource Conservation and Recovery Act. The Site Treatment Plan provides enforceable time periods in which the facility is required to treat or otherwise meet land disposal restriction requirements for the accumulated waste.

The Laboratory updates its Site Treatment Plan annually. The annual report documents the amount of mixed waste that has been stored at the Laboratory under the plan provisions during the previous fiscal year and the amount shipped to approved Treatment, Storage, and Disposal Facilities. The Site Treatment Plan Report is due to the New Mexico Environment Department on March 31 each year, using data from the previous fiscal year (October 1 to September 31).

During fiscal year 2019, mixed low-level waste covered under the Laboratory’s Site Treatment Plan increased as a result of an ongoing transuranic waste recharacterization activity. There was a backlog of stored mixed low-level and mixed transuranic waste because of shipping pauses during fiscal year 2018, limited shipments to the Waste Isolation Pilot Plant, and restrictions onsite at Area G. The restrictions delayed the final confirmation, characterization, certification, and shipment of mixed transuranic waste for offsite disposal to the Waste Isolation Pilot Plant.

Table 2-3 provides the volumes of mixed waste managed under the Site Treatment Plan at the Laboratory during fiscal year 2019. These waste volumes may be adjusted slightly by reconciliation during the New Mexico Environment Department review of the Site Treatment Plan update. Approved Site Treatment Plan updates are available at http://www.env.nm.gov/hazardous-waste/lanl-ffco-stp/.

Table 2-3. Approximate Volumes of Mixed Wastes Stored and Shipped Offsite for Treatment and/or Disposal under the Laboratory’s Site Treatment Plan by the Management and Operating Contractor (Triad) and the Legacy Waste Cleanup Contractor (N3B) During Fiscal Year 2019

<table>
<thead>
<tr>
<th>LANL Contractor</th>
<th>Volume of mixed wastes stored at LANL under the Site Treatment Plan</th>
<th>Volume of mixed wastes shipped offsite under the Site Treatment Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mixed Low-level Waste</td>
<td>Mixed Transuranic Waste</td>
</tr>
<tr>
<td>Triad</td>
<td>35 cubic yards (27 cubic meters)</td>
<td>3.8 cubic yards (2.7 cubic meters)</td>
</tr>
<tr>
<td>N3B</td>
<td>290 cubic yards (221.5 cubic meters)</td>
<td>0.3 cubic yards (0.2 cubic meters)</td>
</tr>
<tr>
<td></td>
<td>Mixed Transuranic Waste</td>
<td></td>
</tr>
<tr>
<td>Triad</td>
<td>452 cubic yards (345.6 cubic meters)</td>
<td>171 cubic yards (130.6 cubic meters)</td>
</tr>
<tr>
<td>N3B</td>
<td>1,839 cubic yards (1,406.2 cubic meters)</td>
<td>61 cubic yards (46.9 cubic meters)</td>
</tr>
</tbody>
</table>

OTHER WASTES

Specific Chemical Wastes: Toxic Substances Control Act

The Toxic Substances Control Act addresses the production, import, use, and disposal of specific chemicals, including PCBs. The Laboratory is responsible for keeping records and reporting the import or export of small quantities of chemicals used for LANL research activities and the disposal of PCB-containing substances. PCB-containing substances include (1) dielectric fluids, (2) solvents, (3) oils, (4) waste oils, (5) heat-transfer fluids, (6) hydraulic fluids, (7) slurries, (8) soil, and (9) materials contaminated by spills.
In 2019, the Laboratory shipped offsite for disposal or recycling 109 containers (1,484 tons) of PCB-containing wastes. About 1,851 cubic yards (1,415 cubic meters) of waste contaminated with PCBs were sent to a U.S. Environmental Protection Agency-authorized treatment and disposal facility in Veolia, Colorado. This total includes wastes classified as PCB wastes, as well as waste in other categories (such as low-level wastes) that also contained PCBs.

Laboratory staff conducted 11 Toxic Substances Control Act reviews for chemicals imported or exported by the Laboratory’s Property Management Group Customs Office in 2018. These reviews were conducted to ensure certain chemical compounds follow the Toxic Substances Control Act requirements before these compounds are imported or exported out of the country. These shipments were all properly categorized, and the chemical compound samples were sent to collaborative researchers in other countries.

AIR QUALITY AND PROTECTION

Clean Air Act

Title V Operating Permit

Under the Clean Air Act, the Laboratory is regulated as a major source of air pollutants based on its potential to emit nitrous oxides, carbon monoxide, and volatile organic compounds. Because the Laboratory has a Clean Air Act Title V Operating Permit, it must keep air emissions of regulated pollutants below permit limits. In 2019, the Laboratory submitted its five-year renewal application and one Title V administrative revision application. These two permitting actions are summarized as follows:

- The current Title V Operating Permit has an expiration date of February 27, 2020. The Laboratory is required to submit a Title V renewal application 12 months before the expiration date. The Laboratory submitted the renewal application on February 26, 2019. The New Mexico Environment Department is currently reviewing the application.
- In March 2019, LANL submitted a minor modification application to add one additional evaporative sprayer at the existing Sigma Mesa evaporation basins. The New Mexico Environment Department approved this minor modification on July 18, 2019.

Every year the Laboratory certifies its compliance with the conditions of its Title V Operating Permit and reports any permit deviations that occurred to the New Mexico Environment Department. Deviations occur when any permit condition is not met. In 2019, the Laboratory maintained compliance with all permit terms and conditions and had no Title V Operating Permit deviations. Additionally, all emissions were well below permitted allowable levels. Table 2-4 summarizes the Laboratory’s emissions data and provides a list of the major sources of these air pollutants at the Laboratory.
Table 2-4. Calculated Emissions of Regulated Air Pollutants Reported to the New Mexico Environment Department in 2019

<table>
<thead>
<tr>
<th>Emission Unit</th>
<th>Nitrous Oxides</th>
<th>Sulfur Oxides</th>
<th>Particulate Matter</th>
<th>Carbon Monoxide</th>
<th>Volatile Organic Compounds</th>
<th>Other Hazardous Air Pollutants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt plant</td>
<td>0.003</td>
<td>0.002</td>
<td>0.002</td>
<td>0.12</td>
<td>0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Technical Area 03 power plant (3 boilers)</td>
<td>10.30</td>
<td>0.11</td>
<td>1.35</td>
<td>7.10</td>
<td>0.98</td>
<td>0.34</td>
</tr>
<tr>
<td>Technical Area 03 power plant (combustion turbine)</td>
<td>2.30</td>
<td>0.16</td>
<td>0.31</td>
<td>0.31</td>
<td>0.10</td>
<td>0.06</td>
</tr>
<tr>
<td>Research and development chemical use</td>
<td>n/a¹</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>12.02</td>
<td>4.86</td>
</tr>
<tr>
<td>Degreaser</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0.061</td>
<td>0.061</td>
</tr>
<tr>
<td>Data disintegrator</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>0.19</td>
<td>n/a</td>
</tr>
<tr>
<td>Stationary standby generators²</td>
<td>6.13</td>
<td>0.18</td>
<td>0.25</td>
<td>1.36</td>
<td>0.25</td>
<td>0.002</td>
</tr>
<tr>
<td>Miscellaneous small boilers</td>
<td>19.41</td>
<td>0.12</td>
<td>1.56</td>
<td>15.50</td>
<td>1.11</td>
<td>0.37</td>
</tr>
<tr>
<td>Permitted generators (11 units)</td>
<td>2.92</td>
<td>0.077</td>
<td>0.12</td>
<td>1.52</td>
<td>0.27</td>
<td>0.001</td>
</tr>
<tr>
<td>TOTAL</td>
<td>41.06</td>
<td>0.65</td>
<td>3.78</td>
<td>25.91</td>
<td>14.73</td>
<td>5.70</td>
</tr>
<tr>
<td>Permit Limits (tons/year)</td>
<td>245</td>
<td>150</td>
<td>120</td>
<td>225</td>
<td>200</td>
<td>120</td>
</tr>
</tbody>
</table>

¹n/a = not applicable
²The stationary standby generators are no longer sources in the Laboratory’s Title V permit. However, they are included in this table for comparison with previous annual site environmental reports.

The Laboratory’s emissions in 2019 were significantly lower than the permit limits. For example, nitrogen oxide emissions were approximately 14 percent of the permit limit, carbon monoxide emissions were 11 percent of the permit limit, and particulate matter emissions were 3 percent of the permit limit. No emissions in excess of permit limits occurred from any of the permitted sources.

Figure 2-1 depicts a 5-year history of pollutant emissions at the Laboratory. Emissions from 2015 through 2019 remained relatively constant.

Management of Refrigerants and Halons under Title VI – Stratospheric Ozone Protection

Title VI of the Clean Air Act regulates chemicals known to deplete the ozone layer in the atmosphere. Chemicals include halons, chlorofluorocarbons, and hydrochlorofluorocarbons, as well as some other non-ozone-depleting chemicals such as hydrofluorocarbons. These chemicals are primarily used as refrigerants, solvents, propellants, and foam-blowing agents. The regulation prohibits the Laboratory from knowingly venting or otherwise releasing into the environment any of these chemicals during maintenance, service, repair, or disposal of refrigeration equipment (such as air conditioners, refrigerators, chillers, or freezers) or fire-suppression systems. All technicians who work on refrigeration equipment at the Laboratory are certified by the U.S. Environmental Protection Agency.

The Laboratory is working to remove refrigeration equipment that uses ozone-depleting substances and replace it with equipment using more environmentally friendly refrigerants listed as acceptable under the U.S. Environmental Protection Agency’s Significant New Alternatives Program. In 2019, 4,143 pounds of refrigerant were sent offsite for disposal. Of that amount, 3,411 pounds were ozone-
depleting refrigerants. Additionally, the Laboratory has one remaining fire-suppression system that uses halon.

![Graph](image.png)

Figure 2-1. This graph plots Laboratory criteria pollutant emissions from 2015 through 2019. These totals do not include small boilers or standby generators.

Regulation of Airborne Radionuclide Emissions under the Radionuclide National Emission Standards for Hazardous Air Pollutants

Emissions of airborne radionuclides are regulated under the Radionuclide National Emission Standards for Hazardous Air Pollutants, which sets a dose limit of 10 millirem per year to any member of the public for air emissions. The estimated maximum dose of air emissions to a member of the public in 2019 was 0.43 millirem, less than 5 percent of the limit (see Chapter 8, Public Dose and Risk Assessment). In March 2019, the Laboratory received U.S. Environmental Protection Agency approval for a major new release point, the Flanged Tritium Waste Container venting project. The project is expected to begin operations in late 2020.

New Mexico Air Quality Control Act

New Source Reviews

The State of New Mexico requires that new or modified emission sources be evaluated to determine whether they (1) do not require a construction permit because they are exempted under the New Mexico Administrative Code (“exempted”), (2) do not produce sufficient emissions to require a
construction permit (“no permit required”), (3) require a notice of intent to construct, or (4) require a construction permit. In 2019, the Laboratory submitted to the State of New Mexico three “exempted” notifications for air emissions from the following exempt activities:

- Seventeen small gas-fired comfort heaters and boilers
- One electric-powered thermal evaporator
- One small paint booth equipped with two-stage, high-efficiency particulate air filtration

Asbestos Notifications

The Asbestos National Emission Standards for Hazardous Air Pollutants require the Laboratory to provide advance notice to the New Mexico Environment Department Air Quality Bureau for large renovation jobs that involve asbestos and for all demolition projects. The standards also require that facilities conducting activities that involve asbestos mitigate visible airborne emissions and properly package and dispose of all asbestos-containing wastes. In 2019, 16 large renovation and demolition projects were completed. Advance notification to the New Mexico Environment Department was submitted for each project. All waste was properly packaged and disposed of at approved landfills.

SURFACE WATER QUALITY AND PROTECTION

Clean Water Act

The primary goal of the Clean Water Act is to restore and maintain the chemical, physical, and biological integrity of the nation’s waters. This act requires National Pollutant Discharge Elimination System permits for several types of effluent and storm water discharges. The permits described below establish specific chemical, physical, and biological criteria and management practices the Laboratory must meet when discharging water. The U.S. Environmental Protection Agency, Region 6, provides and enforces the Laboratory’s Clean Water Act permits. The New Mexico Environment Department certifies the permits as being protective of waters in New Mexico and performs some compliance inspections and monitoring on behalf of the U.S. Environmental Protection Agency.

LANL’s National Pollutant Discharge Elimination System Industrial and Sanitary Point Source Outfall Permit

The Laboratory’s current National Pollutant Discharge Elimination System Industrial and Sanitary Point Source Outfall Permit NM0028355 (Outfall Permit) became effective on October 1, 2014, with final modifications implemented May 2015. This Outfall Permit includes one sanitary and ten industrial outfalls that discharge into four watersheds in the region, with the amount of discharge varying from year to year (Table 2-5).

To demonstrate compliance with the permit’s water-quality limits, the Laboratory’s current Outfall Permit requires weekly, monthly, quarterly, yearly, and term sampling of effluents (treated waste water) released to the environment. The sampling results are compared to the permit limits and are reported every month in a Discharge Monitoring Report to the U.S. Environmental Protection Agency and the New Mexico Environment Department. Additionally, any engineering changes or flow changes that would affect quality or quantity of the effluents are reported in a Notice of Planned Change to the U.S. Environmental Protection Agency and the New Mexico Environment Department.
Table 2-5. Volume of Effluent Discharged from Permitted Outfalls in 2019

<table>
<thead>
<tr>
<th>Outfall No.</th>
<th>Building No.</th>
<th>Description</th>
<th>Canyon Receiving Discharge</th>
<th>2019 Discharge (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>03A048</td>
<td>53-963/978</td>
<td>Los Alamos Neutron Science Center cooling tower</td>
<td>Los Alamos</td>
<td>25,790,900</td>
</tr>
<tr>
<td>051</td>
<td>50-1</td>
<td>Technical Area 50 Radioactive Liquid Waste Treatment Facility</td>
<td>Mortandad</td>
<td>21,345</td>
</tr>
<tr>
<td>04A022*</td>
<td>3-2238</td>
<td>Sigma emergency cooling system</td>
<td>Mortandad</td>
<td>1,622,448</td>
</tr>
<tr>
<td>03A160</td>
<td>35-124</td>
<td>National High Magnetic Field Laboratory cooling tower</td>
<td>Mortandad</td>
<td>0</td>
</tr>
<tr>
<td>03A181</td>
<td>55-6</td>
<td>Plutonium Facility cooling tower</td>
<td>Mortandad</td>
<td>2,958,376</td>
</tr>
<tr>
<td>13S</td>
<td>46-347</td>
<td>Sanitary waste water system plant</td>
<td>Sandia</td>
<td>0</td>
</tr>
<tr>
<td>001</td>
<td>3-22</td>
<td>Power plant (includes treated effluent from sanitary waste water system plant)</td>
<td>Sandia</td>
<td>72,149,900</td>
</tr>
<tr>
<td>03A027</td>
<td>3-2327</td>
<td>Strategic Computing Complex cooling tower</td>
<td>Sandia</td>
<td>0</td>
</tr>
<tr>
<td>03A113</td>
<td>53-293/952</td>
<td>Los Alamos Neutron Science Center cooling tower</td>
<td>Sandia</td>
<td>198,530</td>
</tr>
<tr>
<td>03A199</td>
<td>3-1837</td>
<td>Laboratory Data Communications Center</td>
<td>Sandia</td>
<td>12,654,400</td>
</tr>
<tr>
<td>05A055</td>
<td>16-1508</td>
<td>High Explosives Wastewater Treatment Facility</td>
<td>Water</td>
<td>0</td>
</tr>
</tbody>
</table>

*This outfall’s designation was changed from 03A022 to 04A022 in the October 2014 permit renewal to reflect only emergency cooling water and roof drain/storm water discharges to the outfall (cooling tower blowdown was diverted to the sanitary waste water system plant).

Laboratory personnel collected 794 samples in 2019 from Outfalls 001, 03A048, 03A113, 03A181, 03A199, 04A022, and 051. Five of these samples (0.6 percent) exceeded a permit limit (Table 2-6). Each of these instances was addressed immediately by correcting the cause or ceasing the discharge until corrective actions could be implemented that would return the effluent to compliance. Outfalls 13S, 03A027, 03A160, and 05A055 did not discharge in 2019.

The Laboratory has been working on projects to identify and reduce PCBs in water discharged to Outfall 001. Efforts have included cleaning out PCBs in upstream sumps, tanks, cleanouts, and manholes. We have also optimized the treatment process at the sanitary waste water system treatment plant to increase its ability to reduce PCBs in its effluent. These combined efforts resulted in an annual compliance sample result at Outfall 001 of 0 milligrams/liter total PCB in May 2019.

The current National Pollutant Discharge Elimination System Permit NM002835 expired on September 30, 2019, but it was administratively continued on October 22, 2019, by the U.S. Environmental Protection Agency. The National Pollutant Discharge Elimination System permit and regulations require the permittees to submit a reapplication to the U.S. Environmental Protection Agency 180 days before the existing permit expires. The Laboratory submitted a permit reapplication on March 26, 2019, and the U.S. Environmental Protection Agency issued a draft permit for public comment on November 30, 2019.
Table 2-6. Instances in which Samples Exceeded Permit Limits at National Pollutant Discharge Elimination System Permitted Industrial and Sanitary Outfalls in 2019

<table>
<thead>
<tr>
<th>Outfall No.</th>
<th>Parameter</th>
<th>Date</th>
<th>Permit Limit (mg/liter)</th>
<th>Result (mg/liter)</th>
<th>Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>051</td>
<td>Whole Effluent Toxicity</td>
<td>Jun 18</td>
<td>100%</td>
<td>56%</td>
<td>Increased the alkalinity to >50 milligrams/liter and pH to >7.5.</td>
</tr>
<tr>
<td>03A199</td>
<td>Total Residual Chlorine</td>
<td>Jun 19</td>
<td>0.011</td>
<td>0.42</td>
<td>Resumed addition of dechlorination chemical and replaced a failed controller so that the dechlorination chemical is automatically added.</td>
</tr>
<tr>
<td>03A199</td>
<td>Total Residual Chlorine</td>
<td>Nov 20</td>
<td>0.011</td>
<td>0.32</td>
<td>Added a backup pump and revised the maintenance procedure to route blowdown to the Sanitary Waste Water System (instead of the outfall) when the chemical feed system is being worked on.</td>
</tr>
<tr>
<td>03A181</td>
<td>Total Residual Chlorine</td>
<td>Jun 19</td>
<td>0.011</td>
<td>0.04</td>
<td>Realigned the blowdown valve to correct the dechlorination chemical to blowdown ratio; removed the valve handles to prevent future accidental realignment; and added a warning tag to the valve.</td>
</tr>
<tr>
<td>03A181</td>
<td>Total Residual Chlorine</td>
<td>Jul 9</td>
<td>0.011</td>
<td>0.06</td>
<td>Replaced the malfunctioning chemical feed pump associated with the addition of dechlorination chemical.</td>
</tr>
</tbody>
</table>

*Daphnia pulex Mean Survival

National Pollutant Discharge Elimination System General Permit for Discharges of Storm Water from Construction Sites

The National Pollutant Discharge Elimination System General Permit for Discharges of Storm Water from Construction Sites (Construction General Permit) regulates storm water discharges from construction sites covering one or more acres or projects less than one acre that are part of a common plan-of-development. Laboratory compliance with the Construction General Permit includes developing storm water pollution prevention plans and conducting site inspections during construction. A storm water pollution prevention plan describes project activities, site conditions, best management practices for sediment and erosion control, and permanent control measures, such as detention ponds for storm water, required to reduce pollutants in storm water discharges. Laboratory personnel inspect the location and condition of storm water controls during construction and identify corrective actions, if needed.

In 2019, Triad was responsible for 33 storm water pollution prevention plans for construction sites and performed 783 inspections, with sites found fully compliant during 89.5 percent of them. N3B implemented six construction projects under the Construction General Permit. Each project included preparing and implementing a site-specific storm water pollution prevention plan and regular inspections to document compliance with Construction General Permit requirements. No corrective actions were documented. The U.S. Army Corps of Engineers managed three construction projects at the Laboratory during 2019, including their storm water pollution prevention plans. They conducted 96 inspections. Items found not to be in compliance were addressed with corrective actions that rehabilitated storm water pollution prevention measures.
National Pollutant Discharge Elimination System Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activities

The National Pollutant Discharge Elimination System Multi-Sector General Permit for Storm Water Discharges Associated with Industrial Activities (Multi-Sector General Permit) regulates storm water discharges from specific industrial activities and associated facilities. Industrial activities conducted at the Laboratory and covered under the Multi-Sector General Permit include the following: (1) metal and ceramic fabrication, (2) wood product fabrication, (3) hazardous waste treatment and storage, (4) vehicle and equipment maintenance, (5) recycling activities, (6) electricity generation, (7) warehousing activities, and (8) asphalt manufacturing. The purpose of the Multi-Sector General Permit is to minimize offsite migration of pollutants in storm water.

The Multi-Sector General Permit requires the development of storm water pollution prevention plans, identification of potential pollutants, implementation of storm water control measures, and monitoring of storm water discharges. Additional permit requirements include:

- inspecting facility storm water controls, identifying conditions requiring corrective action, and performing corrective actions as needed;
- sampling storm water runoff at monitored discharge points at each industrial facility and comparing results to benchmark values, impaired water limits (the New Mexico surface water quality standards), and effluent limitations; and
- visually inspecting storm water runoff samples to assess color; odor; floating, settled, or suspended solids; foam; oil sheen; and other indicators of storm water pollution.

A permit tracking number issued to an operator by the U.S. Environmental Protection Agency authorizes storm water discharge from a specific facility or group of facilities. Responsibilities for Multi-Sector General Permit compliance at the Laboratory are identified by permit tracking number and operator in Table 2-7.

Table 2-7. Multi-Sector General Permit Tracking Numbers by Operator and Covered Industrial Activity

<table>
<thead>
<tr>
<th>Permit Tracking Number</th>
<th>Industrial Activities Covered</th>
<th>Responsible Operator</th>
<th>Operator Role</th>
<th>Date Permit Coverage Began</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMR050011</td>
<td>Technical Area 54 Maintenance Facility West</td>
<td>N3B</td>
<td>Environmental Management Legacy Cleanup</td>
<td>5/2/2018</td>
</tr>
<tr>
<td>NMR050012</td>
<td>Technical Area 54 Areas G and L</td>
<td>N3B</td>
<td>Environmental Management Legacy Cleanup</td>
<td>5/2/2018</td>
</tr>
<tr>
<td>NMR050013</td>
<td>Metal and ceramic fabrication, wood product fabrication, vehicle and equipment maintenance, recycling activities, electricity generation, warehousing activities, and asphalt manufacturing</td>
<td>Triad National Security, LLC</td>
<td>National Nuclear Security Administration Operations and Management</td>
<td>11/1/2018</td>
</tr>
</tbody>
</table>

Because the Laboratory’s Multi-Sector General Permit implementation and compliance have specific operators, annual compliance activities are reported separately for each operator.
Management and Operating Contractor (Triad) Compliance Summary

Eight facilities operated by Triad are permitted under the Multi-Sector General Permit. Storm water monitoring under the permit occurs from April 1 through November 30 every year. Under the current permit, the benchmark values for some pollutants are the same as New Mexico surface water quality standards.

If an exceedance occurs, it is documented as a condition that triggers corrective action, which includes evaluation of potential sources and either follow-up action or documentation of why no action is required. All identified corrective actions associated with exceedances in 2019 have been completed. An exceedance of a benchmark value does not trigger a corrective action if it is determined that the exceedance is solely attributable to natural background sources.

In 2019, we completed the following tasks as part of the Multi-Sector General Permit compliance:

- 96 inspections of storm water controls at the eight active permitted facilities,
- one annual inspection at each of 39 sites having “no exposure” status,
- collection of 90 samples at eight active permitted sites,
- 245 inspections of ISCO automated sampler equipment,
- 116 inspections of single-stage samplers at substantially identical discharge points (discharge points that discharge storm water from the same source and with the same control measures and amount of storm water runoff per unit area),
- 46 visual inspections at 15 monitored discharge points,
- 66 visual inspections at 16 substantially identical discharge points, and
- 234 corrective actions, including
 - 28 corrective actions to mitigate exceedances,
 - nine additional storm water control measures installed at six active permitted sites,
 - maintenance, repair, or replacement of 63 control measures at seven active permitted sites,
 - 85 actions to remedy control measures inadequate to meet nonnumeric effluent limits, and
 - 58 corrective actions to address unauthorized releases (spills) or discharges.

By meeting permit-defined criteria under Triad’s Permit Tracking Number NMR050013, the Laboratory discontinued monitoring for 17 types of pollutants at eight active permitted sites for 2019. Two pollutants registered below benchmark values at one site, so monitoring for these pollutants was discontinued. Also, monitoring for 15 other pollutants was discontinued at eight sites because these constituents were not detected in storm water samples obtained at the monitored outfalls.

Tables 2-8 through 2-10 summarize the exceedance of water quality standards (i.e., impaired waters limits), effluent limitations, or quarterly benchmarks under the management and operating contractor’s National Pollutant Discharge Elimination System Multi-Sector General Permit.
Table 2-8. 2019 Exceedances of the Management and Operating Contractor’s (Triad’s) National Pollutant Discharge Elimination System Multi-Sector General Permit-Impaired Waters* Limits

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Exceeded Parameters</th>
<th>Date(s) Exceeded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Copper, Dissolved</td>
<td>Aluminum, Total Recoverable</td>
</tr>
<tr>
<td>002</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>005</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>009</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>012</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>026</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>029</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>032</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>037</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>039</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>042</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>075</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>076</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

*An impaired-waters exceedance means that the value exceeds a New Mexico surface water quality standard, as provided in Standards for Interstate and Intrastate Surface Waters, Title 20, Chapter 6, Part 4 of the New Mexico Administrative Code. Eighteen of 44 impaired waters results (41 percent) exceeded a New Mexico surface water quality standard.

Table 2-9. 2019 Exceedances of the Management and Operating Contractor’s (Triad’s) National Pollutant Discharge Elimination System Multi-Sector General Permit Quarterly Benchmarks*

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Exceeded Parameters</th>
<th>Date(s) Exceeded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aluminum, Total Recoverable</td>
<td>Iron, Total</td>
</tr>
<tr>
<td>002</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>005</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>009</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>022</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>076</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

*A quarterly benchmark exceedance means the value exceeded a benchmark value defined in the Multi-Sector General Permit. Benchmarks are not permit limits. The benchmark values for copper, aluminum, and zinc are the same as New Mexico surface water quality standards. Fifteen of 50 benchmark results measured (30 percent) resulted in a benchmark value exceedance.
Table 2-10. 2019 Exceedances of the Management and Operating Contractor’s (Triad’s) National Pollutant Discharge Elimination System Multi-Sector General Permit Effluent Limitations*

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Exceeded Parameters</th>
<th>Date(s) Exceeded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Suspended Solids, Daily Limit</td>
<td>Total Suspended Solids, 30-Day Avg.</td>
</tr>
</tbody>
</table>

*An effluent limitation exceedance means the value exceeded an effluent limit defined in the Multi-Sector General Permit. Three of four effluent limitation results measured (75 percent) resulted in an effluent limit exceedance.

Legacy Cleanup Contractor (N3B) Compliance Summary

N3B completed the following corrective actions in 2019.

Technical Area 54 Areas G and L – The combined results of routine facility inspections, visual assessments, and benchmark and impairment sampling generated 22 corrective actions. Of these, 13 corrective actions were due to baseline monitoring exceedances of total magnesium levels in storm water, seven were due to the discovery of storm water controls in a deteriorated state, one was due to the observance of poor housekeeping conditions at Area L, and one corrective action was due to the discovery of a hydraulic fluid leak at Area G. All corrective actions were completed within 45 days of discovery. No incidents of noncompliance with the Multi-Sector General Permit are known regarding this facility.

Technical Area 54 Maintenance Facility West – One incident involved approximately five gallons of diesel fuel spilled from a forklift, and the second involved a release of hydraulic fluid from staged equipment at the site. In both cases, immediately following discovery, the impacted soil was removed and managed appropriately. Corrective actions were completed within 45 days of discovery. No incidents of noncompliance with the Multi-Sector General Permit are known regarding this facility.

Table 2-11 summarizes the exceedance of water quality standards (i.e., impaired waters), effluent limitations, or quarterly benchmarks for N3B’s National Pollutant Discharge Elimination System Multi-Sector General Permit.
Table 2-11. 2019 Exceedances of the Legacy Cleanup Contractor’s (N3B’s) National Pollutant Discharge Elimination System Multi-Sector General Permit Quarterly Benchmarks*

<table>
<thead>
<tr>
<th>Discharge Point</th>
<th>Magnesium, Total</th>
<th>Chemical Oxygen Demand</th>
<th>Cadmium, Total</th>
<th>Lead, Total</th>
<th>Mercury, Total</th>
<th>Date(s) Exceeded</th>
</tr>
</thead>
<tbody>
<tr>
<td>050</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td>4/23, 6/14, 8/3, 10/4</td>
</tr>
<tr>
<td>051</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>7/26 – excluding chemical oxygen demand, 10/4</td>
</tr>
<tr>
<td>053</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>5/30 – magnesium, total, 6/17, 10/24</td>
</tr>
<tr>
<td>069</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>4/29 – magnesium, total, 6/17, 8/6 – magnesium, total</td>
</tr>
<tr>
<td>072</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
<td>10/4</td>
</tr>
</tbody>
</table>

*A quarterly benchmark exceedance means the value exceeded a benchmark value defined in the Multi-Sector General Permit. Benchmarks are not permit limits. The benchmark values for aluminum are the same as New Mexico surface water quality standards. Forty-two of 134 benchmark results measured (31 percent) resulted in a benchmark value exceedance.

LANL’s Individual Permit Authorization to Discharge under the National Pollutant Discharge Elimination System (from Solid Waste Management Units and Areas of Concern)

The Individual Permit Authorization to Discharge under the National Pollutant Discharge Elimination System (Individual Permit) authorizes discharges of storm water from certain Solid Waste Management Units and Areas of Concern (hereafter called sites) at the Laboratory. The permit lists 405 sites that must be managed to remain in compliance with its terms and conditions. The objective is to prevent storm water runoff from transporting pollutants of concern from these sites to surface waters. Pollutants of concern potentially occurring at these sites include metals, organic chemicals, high explosives, and radionuclides.

The U.S. Environmental Protection Agency issued the original permit in 2010, and it has been administratively continued. A new draft permit was issued by the U.S. Environmental Protection Agency in November 2019 for public comment; the public comment period has been extended to May 31, 2020.

The Individual Permit has technology-based requirements for storm water control. This means that storm water controls that reflect best industry practices, considering their availability, economic achievability, and practicability, are required at each of the 405 permitted sites. Examples of controls used to manage storm water under the Individual Permit include retention berms and coir logs. These storm water controls are routinely inspected and are maintained as needed.

The permit required the Laboratory to install baseline controls at all 405 sites. These baseline controls were completed and certified to the U.S. Environmental Protection Agency in 2010–2011. The 405 sites have been grouped into 250 small sub-watersheds, known as site monitoring areas, for permit monitoring. Specific locations within each site monitoring area are used to sample storm water runoff from the sites. If target action levels of pollutants, which are based on New Mexico surface water quality standards, are exceeded in the storm water samples, the sites enter into corrective action and additional controls are installed within the site monitoring area. Once all control measures have been installed and the results of sampling confirm that all pollutants of concern for a site monitoring area are
below target action levels, the Laboratory certifies to the U.S. Environmental Protection Agency that the corrective actions are complete for the sites in that site monitoring area.

If all storm water control measures have been installed, but the Laboratory cannot demonstrate that all results are below target action levels (for example, if natural background concentrations at the site are above the target action levels), the Laboratory can request that a site be placed into alternative compliance. For a site placed into alternative compliance, the completion of the corrective action is accomplished according to an individual site compliance schedule determined by the U.S. Environmental Protection Agency.

In summary, the process of complying with the Individual Permit can be broken down into five categories: (1) installing and maintaining control measures, (2) performing storm water sampling to determine the effectiveness of control measures, (3) conducting additional corrective action if a target action level is exceeded, (4) reporting results of fieldwork and monitoring to the U.S. Environmental Protection Agency and the New Mexico Environment Department, and (5) certifying that corrective action is complete or requesting alternative compliance to the U.S. Environmental Protection Agency.

Site monitoring areas where the Laboratory has not collected sufficient storm water samples to date (for example, because of a lack of local rainfall) are referred to as being in “extended baseline monitoring.” Site monitoring areas that have collected storm water samples with results that have exceeded target action levels enter into corrective action, and one path to completion of corrective action is installing “enhanced” controls. After installation of the enhanced controls is complete, additional storm water sampling is required and is referred to as “corrective action monitoring.”

In 2019, LANL completed the following tasks to comply with the requirements of the Individual Permit:

- Published an update to the 2018 Site Discharge Pollution Prevention Plan, which identified pollutant sources, described control measures, and defined monitoring at all permitted sites.
- Published the “Storm Water Individual Permit Annual Report for Reporting Period January 1–December 31, 2019,” which presents compliance status for all permitted sites, conducted activities, and accomplished milestones to comply with the Individual Permit.
- Completed 1,094 inspections of storm water controls at the 250 site monitoring areas.
- Completed 1,152 sampling equipment inspections.
- Conducted storm water monitoring at 132 site monitoring areas.
- Collected extended baseline confirmation samples at 13 site monitoring areas.
- Collected corrective action confirmation samples at four site monitoring areas.
- Installed 46 additional control measures at 31 site monitoring areas.
- Held two public meetings as required by the Individual Permit.
- Submitted alternative compliance requests for 14 site/site monitoring area combinations.
- Submitted analytical results following certification of enhanced controls at seven site/site monitoring area combinations.
- Submitted certification of corrective action complete with analytical results below target action levels at three site/site monitoring area combinations.
- Submitted certification of corrective action complete following a certificate of completion from the New Mexico Environmental Department at 16 site/site monitoring area combinations.
- Submitted Individual Permit reapplication on June 15, 2019.

For more information on surface water quality at the Laboratory, see Chapter 6, Watershed Quality.
Table 2-12 summarizes the exceedance of target action levels for storm water samples collected in 2019 for the Individual Permit.

Aboveground Storage Tank Program

The Laboratory’s Aboveground Storage Tank Program manages compliance with the requirements of the U.S. Environmental Protection Agency under the Clean Water Act and with the New Mexico Administrative Code regulations administered by the New Mexico Environment Department’s Petroleum Storage Tank Bureau. The Laboratory operates 10 tank systems with 12 storage tanks.

In 2019, Petroleum Storage Tank Bureau staff inspected three aboveground storage tanks at the Laboratory. Two facilities were issued Notices of Violation following the inspections. Inspection findings at one facility were addressed and received a Certificate of Compliance from the Petroleum Storage Tank Bureau, whereas corrective actions are in progress at the second facility. Work is ongoing to upgrade a tank system that was previously issued a Notice of Violation, and this work is scheduled to be completed in 2020. Following completion of the work, the Petroleum Storage Tank Bureau will re-inspect the facility. All work is being conducted in accordance with regulations identified in New Mexico Administrative Code Title 20, Chapter 5.

The U.S. Environmental Protection Agency requires spill prevention, control, and countermeasure plans for facilities with aboveground storage tank systems. In 2019, Laboratory staff members completed updates to two of these plans and began updates to three other plans. Laboratory staff conducted all annual and monthly inspections for the facilities. In 2019, the Laboratory was in full compliance with the federal Clean Water Act requirements for the tanks.

Clean Water Act Section 404/401 Permits

Section 404 of the Clean Water Act requires that the Laboratory receive verification from the U.S. Army Corps of Engineers that proposed projects within perennial, intermittent, or ephemeral watercourses comply with Clean Water Act nationwide permit conditions. Additionally, Section 401 of the Clean Water Act requires states to certify that Section 404 permits issued by the U.S. Army Corps of Engineers comply with state water quality standards. The New Mexico Environment Department reviews Section 404/401 permit applications and issues separate Section 401 certification letters, which may include additional requirements to meet state stream standards for individual Laboratory projects. Section 404/401 verifications and certifications that were issued or active at the Laboratory in 2019 are listed in the Summary of Permits and Legal Orders section at the end of this chapter.
This page intentionally blank.
Table 2-12. 2019 Exceedances of LANL’s National Pollutant Discharge Elimination System Individual Permit Target Action Levels

<table>
<thead>
<tr>
<th>Site Monitoring Area (SMA)</th>
<th>Parameter</th>
<th>Type of Exceedance*</th>
<th>Number of Exceedances</th>
<th>Total Number of Samples Taken</th>
<th>Date(s) Exceeded</th>
<th>Description and Corrective Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-SMA-2</td>
<td>Copper, dissolved</td>
<td>maximum target action level</td>
<td>2</td>
<td>2</td>
<td>7/25/2019 10/4/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td></td>
<td>Gross alpha, total</td>
<td>average target action level</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DP-SMA-0.6</td>
<td>Gross alpha, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td>7/26/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td>DP-SMA-3</td>
<td>Gross alpha, total</td>
<td>average target action level</td>
<td>2</td>
<td>2</td>
<td>7/25/2019 8/9/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td>LA-SMA-5.2</td>
<td>Arsenic, dissolved</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td>7/26/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td></td>
<td>Gross alpha, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radium-226 and Radium-228, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc, dissolved</td>
<td>maximum target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA-SMA-5.361</td>
<td>Gross alpha, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td>8/7/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td></td>
<td>Selenium, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA-SMA-6.3</td>
<td>Aluminum, dissolved</td>
<td>maximum target action level</td>
<td>1</td>
<td>1</td>
<td>7/26/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td></td>
<td>Gross alpha, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-SMA-12.5</td>
<td>Gross alpha, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td>7/25/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td></td>
<td>Selenium, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M-SMA-12.8</td>
<td>Aluminum, dissolved</td>
<td>maximum target action level</td>
<td>1</td>
<td>1</td>
<td>7/25/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td></td>
<td>Gross alpha, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selenium, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PJ-SMA-11</td>
<td>Copper, dissolved</td>
<td>maximum target action level</td>
<td>1</td>
<td>1</td>
<td>7/2/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td></td>
<td>Gross alpha, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site Monitoring Area (SMA)</td>
<td>Parameter</td>
<td>Type of Exceedance*</td>
<td>Number of Exceedances</td>
<td>Total Number of Samples Taken</td>
<td>Date(s) Exceeded</td>
<td>Description and Corrective Action</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>------------------------</td>
<td>-----------------------------</td>
<td>------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>P-SMA-2.2</td>
<td>Copper, dissolved</td>
<td>maximum target action level</td>
<td>1</td>
<td>1</td>
<td>7/25/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td></td>
<td>Gross alpha, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercury, total</td>
<td>average target action level and maximum target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total PCBs</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zinc, dissolved</td>
<td>maximum target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PT-SMA-2</td>
<td>Copper, dissolved</td>
<td>maximum target action level</td>
<td>1</td>
<td>2</td>
<td>7/25/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td></td>
<td>Gross alpha</td>
<td>average target action level</td>
<td>2</td>
<td>2</td>
<td>7/25/2019 10/4/2019</td>
<td></td>
</tr>
<tr>
<td>R-SMA-2.5</td>
<td>Aluminum, dissolved</td>
<td>maximum target action level</td>
<td>1</td>
<td>1</td>
<td>8/8/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td></td>
<td>Gross alpha, dissolved</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-SMA-5.2</td>
<td>Gross alpha, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td>7/26/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td></td>
<td>Total PCBs</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-SMA-2.5</td>
<td>Gross alpha, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td>7/26/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td></td>
<td>Selenium, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-SMA-7.1</td>
<td>Copper, dissolved</td>
<td>maximum target action level</td>
<td>1</td>
<td>1</td>
<td>7/25/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
<tr>
<td></td>
<td>Gross alpha, total</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W-SMA-6</td>
<td>Gross alpha</td>
<td>average target action level</td>
<td>1</td>
<td>1</td>
<td>7/7/2019</td>
<td>The Site Monitoring Area is being evaluated for a corrective action recommendation.</td>
</tr>
</tbody>
</table>

*The maximum target action level is the target for individual maximum values recorded at a site, and the average target action level is the target for the geometric mean of applicable monitoring results at a site. Target action levels are benchmarks, not permit limits.
The Energy Independence and Security Act: Storm Water Management Practices

Section 438 of the Energy Independence and Security Act of 2007 establishes storm water runoff requirements for federal development and redevelopment projects. Any federal project more than 5,000 square feet that alters the flow of water over the surface of the ground must implement low-impact development controls to maintain pre-development water temperatures, flow rates, flow volumes, and duration. Examples of appropriate controls include vegetated swales, infiltration basins, permeable pavement, vegetated strips, rain barrels, and cisterns. The goal is to manage runoff through infiltration, evapotranspiration, or harvest and reuse.

The Laboratory currently identifies projects for Section 438 compliance through the permits and requirements identification process and excavation permitting. The Laboratory’s Environmental Protection and Compliance Division is responsible for implementing Section 438 compliance. Staff work with internal and subcontractor design and construction personnel to meet the requirements. Section 438 guidance is published in the LANL Engineering Standards Manual. In 2019, there were nine projects completed that required Energy Independence and Security Act compliance. As part of Section 438 compliance, the following projects used swales, bioretention basis, and revegetation to manage storm water discharge: parking lots in Technical Area 03, Technical Area 40, and Technical Area 35; the West Jemez Walkway Project; the East Jemez Erosion Control Project; and the Technical Area 46 Decontamination and Demolition Project. All Energy Independence and Security Act requirements for these projects were completed in 2019.

New Mexico Water Quality Act: Surface Water Protection

Under the New Mexico Water Quality Act, the New Mexico Water Quality Control Commission adopts standards for New Mexico surface waters. Standards for Interstate and Intrastate Surface Waters, Title 20, Chapter 6, Part 4 of the New Mexico Administrative Code, define designated surface water uses for the state, set water quality criteria to protect those uses, and provide an anti-degradation policy. The Laboratory’s National Pollutant Discharge Elimination System permits, along with any dredge and fill activities approved under Section 404 of the Clean Water Act, must be certified by the New Mexico Environment Department to ensure New Mexico water quality standards are met.

Additionally, under Section 303(d) of the Clean Water Act, the New Mexico Environment Department determines which stream reaches (delineated as assessment units) within the state are impaired for their designed use(s). The New Mexico Environment Department uses the Laboratory’s surface water monitoring data in developing its list of impaired waters for the assessment units on Laboratory property. The discharge limits and monitoring requirements in the Laboratory’s National Pollutant Discharge Elimination System permits are determined, in part, by the impairment status of affected watercourses. In 2019, most assessment units at the Laboratory were listed as impaired, sometimes because of naturally occurring substances. See Chapter 6, Watershed Quality, for more information.

GROUNDWATER QUALITY AND PROTECTION

Safe Drinking Water Act

The Los Alamos County Department of Public Utilities supplies water for Los Alamos, White Rock, the Laboratory, and Bandelier National Monument. The Department of Public Utilities issues an annual drinking water quality report, as required by the Safe Drinking Water Act. The report is available at
For 2019, the drinking water quality for Los Alamos met all U.S. Environmental Protection Agency regulations.

New Mexico Water Quality Act: Groundwater Quality Standards

In fiscal year 2019, the Laboratory reported to the New Mexico Environment Department 13 instances of a contaminant detected in groundwater at a location where the contaminant had not been previously detected above a standard or screening level (Table 2-13). The standards and screening levels for this reporting requirement include the following: (1) the New Mexico Environment Department Soil Screening Levels Summary Table A-1 Values for Tap Water, (2) the New Mexico Water Quality Control Commission groundwater standard, and (3) the U.S. Environmental Protection Agency maximum contaminant levels.

Table 2-13. 2019 Locations with First-time Groundwater Quality Standard or Screening Level Exceedances

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Location</th>
<th>Groundwater Zone</th>
<th>Sample Date</th>
<th>Result</th>
<th>Standard or Screening Level Value</th>
<th>Units</th>
<th>Type of Standard or Screening Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDX</td>
<td>R-69 S1</td>
<td>Regional Aquifer</td>
<td>1/31/2019</td>
<td>19.7</td>
<td>7.02</td>
<td>µg/L</td>
<td>New Mexico Environment Department Tap Water Screening Levela</td>
</tr>
<tr>
<td>RDX</td>
<td>R-69 S1</td>
<td>Regional Aquifer</td>
<td>1/31/2019</td>
<td>14.4</td>
<td>7.02</td>
<td>µg/L</td>
<td>New Mexico Environment Department Tap Water Screening Levela</td>
</tr>
<tr>
<td>RDX</td>
<td>R-69 S2</td>
<td>Regional Aquifer</td>
<td>2/13/2019</td>
<td>14.7</td>
<td>7.02</td>
<td>µg/L</td>
<td>New Mexico Environment Department Tap Water Screening Levela</td>
</tr>
<tr>
<td>Iron</td>
<td>MSC-16-06293</td>
<td>Alluvial Groundwater</td>
<td>3/8/2019</td>
<td>1490.00</td>
<td>1000</td>
<td>µg/L</td>
<td>New Mexico Groundwater Standardb</td>
</tr>
<tr>
<td>Iron</td>
<td>WCO-1r</td>
<td>Alluvial Groundwater</td>
<td>3/15/2019</td>
<td>1560.00</td>
<td>1000</td>
<td>µg/L</td>
<td>New Mexico Groundwater Standardb</td>
</tr>
<tr>
<td>Iron</td>
<td>Burning Ground Spring</td>
<td>Intermediate Spring</td>
<td>3/16/2019</td>
<td>1390.00</td>
<td>1000</td>
<td>µg/L</td>
<td>New Mexico Groundwater Standardb</td>
</tr>
<tr>
<td>Barium</td>
<td>CdV-16-02657r</td>
<td>Alluvial Groundwater</td>
<td>3/16/2019</td>
<td>2160.00</td>
<td>2000</td>
<td>µg/L</td>
<td>New Mexico Groundwater Standardb</td>
</tr>
<tr>
<td>Iron</td>
<td>CdV-16-02657r</td>
<td>Alluvial Groundwater</td>
<td>3/16/2019</td>
<td>1430.00</td>
<td>1000</td>
<td>µg/L</td>
<td>New Mexico Groundwater Standardb</td>
</tr>
<tr>
<td>RDX</td>
<td>CdV-16-02657r</td>
<td>Alluvial Groundwater</td>
<td>3/16/2019</td>
<td>148.00</td>
<td>9.66</td>
<td>µg/L</td>
<td>New Mexico Environment Department Tap Water Screening Levela</td>
</tr>
<tr>
<td>Iron</td>
<td>R-25b</td>
<td>Perched-Intermediate Groundwater</td>
<td>3/18/2019</td>
<td>1120.00</td>
<td>1000</td>
<td>µg/L</td>
<td>New Mexico Groundwater Standardb</td>
</tr>
</tbody>
</table>
New Mexico Water Quality Act: Groundwater Discharge Regulations

Under the New Mexico Water Quality Act, the New Mexico Water Quality Control Commission sets regulations for liquid discharges onto or below ground surfaces to protect groundwater. The New Mexico Environment Department enforces groundwater discharge regulations and may require a facility that discharges effluents to submit a discharge plan and obtain a permit. At the beginning of 2019, the Laboratory had five discharge permits. In June 2019, the New Mexico Water Quality Control Commission vacated the Laboratory’s discharge permit DP-1132 for discharges from the Technical Area 50 Radioactive Liquid Waste Treatment Facility and remanded it back to the New Mexico Environment Department for a public hearing. The public hearing was completed, and this discharge permit application is pending.

Technical Area 46 Sanitary Waste Water System Plant Discharge Permit DP-857

On December 16, 2016, the Laboratory was issued a renewal and modification for Discharge Permit DP-857. This permit applies to combined effluent discharges from the Technical Area 46 sanitary waste water system plant, the Sanitary Effluent Reclamation Facility, and the Sigma Mesa evaporation basins.

The permit conditions require quarterly, semi-annual, and annual sampling of (1) the sanitary waste water system plant’s treated water product before discharge; (2) effluent from Outfalls 001, 03A027, and 13S (outfalls that can discharge water from the sanitary waste water system plant); and (3) alluvial groundwater well SCA-3 in Sandia Canyon. In 2019, none of the samples collected exceeded New Mexico groundwater standards, and one inspection of Discharge Permit DP-857 facilities was conducted by the New Mexico Environment Department.

Domestic Septic Tank Disposal Systems Discharge Permit DP-1589

On July 22, 2016, the New Mexico Environment Department issued Discharge Permit DP-1589 to the Laboratory for discharges from eight septic tank disposal systems. These septic systems (a combined septic tank and leach field) are located in remote Laboratory areas, where access to the sanitary waste water system plant’s collection system is not practicable. Five of the eight septic tank disposal systems are active; the remaining three systems are inactive because water service to the buildings using the systems is disconnected.
Discharge Permit DP-1589 requires monitoring and inspections for the Laboratory’s septic tank disposal systems. These actions include, but are not limited to, the following: (1) routine septic tank sampling, (2) septic tank water-tightness testing, (3) inspection of the septic tank for the accumulation of scum and solids, and (4) inspection of the leach field disposal system.

The permit conditions require semi-annual and annual sampling of active septic tank disposal systems. In 2019, none of the samples collected exceeded permit requirements. No inspections of Discharge Permit DP-1589 facilities were conducted.

Technical Area 50 Radioactive Liquid Waste Treatment Facility Discharge Plan and Permit Application DP-1132

On August 20, 1996, the Laboratory submitted a discharge plan and permit application for the Radioactive Liquid Waste Treatment Facility at Technical Area 50. On November 18, 2011, the New Mexico Environment Department requested an updated discharge plan and permit application for this facility, including the solar evaporative tank for discharged treated water located at Technical Area 52. The Laboratory submitted an application on February 16, 2012, and supplemental information on August 10, 2012. On September 13, 2013, the New Mexico Environment Department issued a draft discharge permit for public review and comment. On April 19, 2018, the New Mexico Environment Department held a public hearing in Los Alamos, New Mexico, on the application. Following issuance of the Hearing Officer’s Report, the Secretary of the New Mexico Environment Department issued DP-1132 on August 29, 2018.

During the April, May, and June 2019 meetings of the New Mexico Water Quality Control Commission, the commission considered a motion by a third party concerning discharge permit DP-1132. In the June 2019 meeting, the Water Quality Control Commission vacated discharge permit DP-1132 and remanded it back to the Secretary of the New Mexico Environment Department for a public hearing. On November 14, 2019, the New Mexico Environment Department held a public hearing in Los Alamos, New Mexico, on the Laboratory’s application. The discharge permit application is currently pending a final decision by the Secretary of the New Mexico Environment Department.

Beginning on the day DP-1132 was vacated, June 18, 2018, the Laboratory continued discharge to the evaporation system or Outfall 051 under Temporary Permissions granted by the New Mexico Environment Department. Under these Temporary Permissions, the Laboratory is following all the permit requirements contained in the previously issued DP-1132, except posting of select documents to the Laboratory’s Electronic Public Reading Room. In addition, the Laboratory also meets current State of New Mexico Groundwater Quality Standards requirements.

Discharge Permit DP-1132 and the subsequent Temporary Permissions after DP-1132 was vacated for the Radioactive Liquid Waste Treatment Facility require the Laboratory to implement operational, monitoring, and closure actions. Examples of these actions are (1) monthly sampling of treated effluent; (2) quarterly and annual groundwater monitoring at seven alluvial, perched-intermediate, and regional aquifer wells; (3) installing a soil moisture monitoring system beneath the Technical Area 52 solar evaporation tank; and (4) removing from service seven tanks that do not have secondary containment. In 2019, all requirements were met on or before deadlines, all effluent sample results met groundwater quality standards, and no compliance inspections were completed. All groundwater monitoring well samples met groundwater quality standards, except for exceedances associated with the chromium project, as presented in Chapter 5, Groundwater Protection. In addition, although no compliance
inspection was completed, New Mexico Environment Department personnel did complete several tours related to the reconsideration of Discharge Permit DP-1132.

Land Application of Treated Groundwater Discharge Permit DP-1793

On July 27, 2015, the New Mexico Environment Department issued Discharge Permit DP-1793 to the Laboratory for the discharge of treated groundwater by land application (spraying treated groundwater onto the surface of the ground). Activities involving land application of treated groundwater include well pumping tests, aquifer tests, well rehabilitation, and groundwater tracer studies. Under the permit, individual work plans must be submitted for each land application project. Work plans are posted to the Laboratory’s Electronic Public Reading Room for a 30-day public comment period. Each work plan addresses how groundwater will be treated so that constituent concentrations are less than 90 percent of the New Mexico groundwater standards before discharge.

Injection of Treated Groundwater into Class V Underground Injection Control Wells Discharge Permit DP-1835

On August 31, 2016, the New Mexico Environment Department issued Discharge Permit DP-1835. This permit covers the injection of treated groundwater into six Class V underground injection control wells located in Mortandad Canyon. This permit authorized the withdrawal of chromium-contaminated groundwater from three extraction wells, treatment by ion exchange, and the injection of treated groundwater back into the regional aquifer by six underground injection control wells. On June 28, 2017, the Laboratory requested this permit language be modified, since a fourth extraction well was planned. On July 21, 2017, the New Mexico Environment Department approved this request. Treated groundwater is sampled to demonstrate that chromium concentrations are less than 90 percent of the New Mexico groundwater standard for chromium (50 micrograms per liter) before injection.

Discharge Permit DP-1835 requires quarterly reporting to document (1) influent and discharge volumes, flow rates, and effluent sample results of the treatment systems; (2) volumes injected and water levels above static (no pumping) level for the injection wells; (3) volumes extracted from the extraction wells; (4) groundwater sample results and groundwater contour maps from the monitoring wells; (5) any operations or maintenance activities completed, including replacement of ion exchange vessels or well work-overs; (6) any completed periodic mechanical integrity testing; and (7) changes to operations.

CrIN-6 was drilled and installed in 2017 as a single-screen injection well as part of the Chromium Interim Measure. Measured chromium concentrations of approximately 260 micrograms per liter in CrIN-6 were obtained from initial pumping from the well. This work led to a model-based evaluation of the optimal operational configuration to meet the interim measure objectives. The results indicated that extraction, rather than injection, from the CrIN-6 location would provide the most optimal approach for meeting the interim measure objective. Based on the evaluation, the New Mexico Environment Department approved proceeding with the recommendation to convert CrIN-6 from an injection well to an extraction well (CrEX-5). The conversion of the CrIN-6 well to an extraction well took place in May–June 2019.

Compliance Order on Consent Groundwater Activities

In 2019, the Laboratory performed groundwater protection activities as directed by the New Mexico Environment Department under the Compliance Order on Consent. Activities included sampling and testing groundwater from wells for general monitoring of groundwater quality, investigating the
chromium and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) groundwater plumes, and supporting the chromium interim measure.

Interim measures are actions taken at a contaminated site to reduce chances of human or environmental exposures before the remedial investigation is complete. The goal of the chromium interim measure is to control migration of the chromium groundwater plume while the Laboratory assesses cleanup methods. In 2019, water treatment operations supporting the chromium interim measure included (1) withdrawing chromium-contaminated groundwater from the regional aquifer using up to five extraction wells, (2) treating such water using ion exchange, and (3) injecting the treated groundwater back into the regional aquifer using injection wells. In 2019, the CrEX-1 and CrEX-2 wells were used for extraction from January through late April and from early July through the end of the year. The CrEX-3 well was used for extraction only in July 2019. The CrEX-4 and CrEX-5 wells were used for extraction from mid-November through the end of the year. The CrIN-3, CrIN-4, and CrIN-5 wells were used for injection during the entire year. The CrIN-1 and CrIN-2 wells were used for injection during November–December 2019.

More information is available in Chapter 5, Groundwater Protection.

OTHER ENVIRONMENTAL STATUTES AND ORDERS

National Environmental Policy Act

The National Environmental Policy Act requires federal agencies to consider the environmental impacts of proposed activities, operations, and projects. The DOE has analyzed the impacts of Laboratory operations and activities in a Site-Wide Environmental Impact Statement (DOE 2008a). The Records of Decision for the Site-Wide Environmental Impact Statement (DOE 2008b, DOE 2009) described the operations and activities DOE has approved and any required mitigations.

Laboratory staff specializing in the National Environmental Policy Act review proposed projects to determine if associated impacts have been analyzed in the 2008 Site-Wide Environmental Impact Statement for the Continued Operation of Los Alamos National Laboratory or other existing National Environmental Policy Act documents.

In 2019, staff reviewed approximately 1,000 proposed projects. Those projects or activities that do not have coverage under existing documents require new or additional analyses. The Laboratory projects that required additional National Environmental Policy Act analyses in 2019 are listed below.

In June 2019, the National Nuclear Security Administration published the “The Final Environmental Assessment for the Construction and Operation of a Solar Photovoltaic Array at Los Alamos National Laboratory, Los Alamos, New Mexico” (DOE 2019a). The environmental assessment analyzed a proposal for the Laboratory to construct and operate a 10-megawatt ground-mounted solar photovoltaic system and associated facilities. The proposed solar photovoltaic array location is on approximately 55-plus acres, of which around 50 acres are within a previously disturbed area that was used as a borrow pit in the northwest corner of Technical Area 16 at the Laboratory. The solar photovoltaic array and power transmission line would be designed, constructed, and operated to increase onsite electrical power generation and provide for efficient and sustainable electrical power capability and resilience. The DOE issued a Finding of No Significant Impact with mitigation measures.
In July 2019, the National Nuclear Security Administration published the “Final Supplemental Environmental Assessment for the Wildfire Hazard Reduction and Forest Health Improvement Program at Los Alamos National Laboratory, Los Alamos, New Mexico” (DOE 2019b). In 2000, DOE issued the “Environmental Assessment for the Wildfire Hazard Reduction and Forest Health Improvement Program at Los Alamos National Laboratory” (DOE 2000). The Environmental Assessment evaluated the potential environmental impacts of strategies for addressing wildland fires that threaten Laboratory operations. In 2019, DOE issued this final supplemental environmental assessment to address new strategies that reflect conditions that have changed at LANL since the 2000 Environmental Assessment was issued, including longer fire seasons, changes in vegetation, and global climate change. The DOE issued a Finding of No Significant Impact with mitigation measures.

Four Los Alamos National Laboratory projects were categorically excluded from further DOE National Environmental Policy Act review in 2019:

- Technical Area 68 Water Canyon Test Site Expansion (CX-270449)
- Los Alamos National Laboratory Cellular and Radio Communications Upgrades (CX-270451)
- Construction and Operation of Technical Area 03 Parking Structure (CX-270456)
- Construction and Operation of Technical Area 50 Parking Structure (CX-270459)

National Historic Preservation Act

As amended, the National Historic Preservation Act of 1966 requires federal agencies to consider the effects of their activities on historic properties, including archaeological sites and historic buildings, and requires a mitigation plan for any adverse effects to the properties. LANL’s Cultural Resources Management Plan (LANL 2017b) describes the process for implementing the National Historic Preservation Act and associated laws and regulations.

In fiscal year 2019, archaeologists supported 10 Triad projects by performing new historic property surveys or verifying results from previous surveys. Additionally, archaeologists evaluated 17 archaeological sites for eligibility for inclusion in the National Register of Historic Places (Register). These findings were reported to the New Mexico State Historic Preservation Office, which concurred that all 17 sites were eligible for inclusion in the Register.

Archaeologists conducted an annual inspection of the Museum of Indian Arts and Culture located in Santa Fe, New Mexico. The focus of the inspection was to ensure compliance with regulations to preserve and curate artifacts from archaeological sites excavated on Laboratory property since 1949. These inspections are required under Curation of Federally-Owned and Administered Archaeological Collections, Title 36, Part 79 of the Code of Federal Regulations.

Archaeologists working for the legacy waste cleanup contractor reviewed 21 environmental remediation and contact-handled transuranic waste projects. They also surveyed 61 acres to inventory cultural resources in Technical Area 05. During the survey, archaeologists identified three potential new sites, and site recording is ongoing.

Cultural resources historic buildings staff supported 24 Laboratory projects by performing inspections and research on the historical use of the buildings using the LANL National Security Research Center, documents available through the public reading room, and historical photographs. Historic buildings staff conducted archival documentation for five projects impacting historic buildings at Technical Areas
03, 15, 16, and 46. This work included taking interior and exterior photographs of the buildings. Cultural resources historic buildings staff also participated in surveillance and maintenance evaluations for the most significant historic properties located at the Laboratory, including the 17 buildings and structures that are either included in the Manhattan Project National Historical Park or that are Park eligible (see Chapter 3).

Cultural resources staff continues to conduct consultations with the Accord Pueblos (Pueblo de San Ildefonso, Santa Clara Pueblo, Pueblo of Jemez, and Pueblo de Cochiti) regarding the identification and preservation of traditional cultural properties, human remains, and sacred objects in compliance with the National Historic Preservation Act and the Native American Graves Protection and Repatriation Act.

Endangered Species Act

The Endangered Species Act requires federal agencies to protect federally listed threatened or endangered species, including their habitats. The Laboratory implements these requirements through the Habitat Management Plan (LANL 2017c).

The Laboratory contains habitat for three federally listed species: the southwestern willow flycatcher (*Empidonax traillii extimus*), the Jemez Mountains salamander (*Plethodon neomexicanus*), and the Mexican spotted owl (*Strix occidentalis lucida*). Two other federally listed species occur near the Laboratory: the New Mexico meadow jumping mouse (*Zapus hudsonius luteus*) and the western distinct population segment of the yellow-billed cuckoo (*Coccyzus americanus*). The southwestern willow flycatcher, yellow-billed cuckoo, and New Mexico meadow jumping mouse have not been observed on Laboratory property. In addition, several federal species of concern and state-listed species potentially occur within the Laboratory (Table 2-14) (Hathcock et al. 2015).

The Laboratory reviews proposed projects to determine if they could potentially impact federally listed species or their habitats. In 2019, biologists reviewed 689 excavation permits, 226 project profiles in the permits and requirements identification system, 18 minor siting proposals, and 12 storm water pollution prevention plans for potential impacts to threatened or endangered species. If there is a potential for impacts, biologists work with project personnel to either modify the project to avoid the impacts or to prepare a biological assessment for consultation with the U.S. Fish and Wildlife Service. In 2019, the Laboratory prepared one biological assessment. This assessment analyzed the impacts to listed species for the construction and operation of a suite of projects in four technical areas in the weapons facility operations directorate. This biological assessment received concurrence back from the U.S. Fish and Wildlife Service. In 2019, the Laboratory did not find any projects out of compliance with endangered species protection requirements.

Laboratory staff also conducted surveys for the Mexican spotted owl, Jemez Mountains salamander, and southwestern willow flycatcher. In 2019, Mexican spotted owls were found on Laboratory property in the same nesting locations as past years. Staff found two Mexican spotted owl nests, and breeding was confirmed at both nests. Southwestern willow flycatchers were not found during surveys, but one willow flycatcher of unknown subspecies was recorded during bird banding operations.
Table 2-14. Threatened, Endangered, and Other Sensitive Species Occurring or Potentially Occurring at the Laboratory

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Protected Status¹</th>
<th>Potential to Occur²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empidonax traillii extimus</td>
<td>Southwestern willow flycatcher</td>
<td>E</td>
<td>Moderate</td>
</tr>
<tr>
<td>Mustela nigripes</td>
<td>Black-footed ferret</td>
<td>E</td>
<td>Low</td>
</tr>
<tr>
<td>Strix occidentalis lucida</td>
<td>Mexican spotted owl</td>
<td>T</td>
<td>High</td>
</tr>
<tr>
<td>Coccyzus americanus</td>
<td>Yellow-billed cuckoo (western distinct population segment)</td>
<td>T, NMS</td>
<td>Low</td>
</tr>
<tr>
<td>Zapus hudsonius luteus</td>
<td>New Mexico meadow jumping mouse</td>
<td>E, NME</td>
<td>Low</td>
</tr>
<tr>
<td>Holiaeetus leucocephalus</td>
<td>Bald eagle</td>
<td>NMT, S1</td>
<td>High</td>
</tr>
<tr>
<td>Cynanthus latirostris magicus</td>
<td>Broad-billed hummingbird</td>
<td>NMT</td>
<td>Low</td>
</tr>
<tr>
<td>Amazilia violiceps</td>
<td>Violet-crowned hummingbird</td>
<td>NMT</td>
<td>Low</td>
</tr>
<tr>
<td>Gila pandora</td>
<td>Rio Grande chub</td>
<td>NMS</td>
<td>Moderate</td>
</tr>
<tr>
<td>Plethodon neomexicanus</td>
<td>Jemez Mountains salamander</td>
<td>E, NME</td>
<td>High</td>
</tr>
<tr>
<td>Falco peregrinus anatum</td>
<td>American peregrine falcon</td>
<td>NMT, FSOC</td>
<td>High</td>
</tr>
<tr>
<td>Falco peregrinus tundrius</td>
<td>Arctic peregrine falcon</td>
<td>NMT, FSOC</td>
<td>Moderate</td>
</tr>
<tr>
<td>Accipiter gentiles</td>
<td>Northern goshawk</td>
<td>NMS, FSOC</td>
<td>High</td>
</tr>
<tr>
<td>Lanius ludovicianus</td>
<td>Loggerhead shrike</td>
<td>NMS</td>
<td>High</td>
</tr>
<tr>
<td>Vireo vicinior</td>
<td>Gray vireo</td>
<td>NMT</td>
<td>High</td>
</tr>
<tr>
<td>Myotis ciliolabrum melanorhinus</td>
<td>Western small-footed myotis bat</td>
<td>NMS</td>
<td>High</td>
</tr>
<tr>
<td>Myotis volans interior</td>
<td>Long-legged bat</td>
<td>NMS</td>
<td>High</td>
</tr>
<tr>
<td>Euderma maculatum</td>
<td>Spotted bat</td>
<td>NMT</td>
<td>High</td>
</tr>
<tr>
<td>Corynorhinus townsendii pallescens</td>
<td>Townsend's pale big-eared bat</td>
<td>NMS, FSOC</td>
<td>High</td>
</tr>
<tr>
<td>Nyctinomops macrotis</td>
<td>Big free-tailed bat</td>
<td>NMS</td>
<td>High</td>
</tr>
<tr>
<td>Bassariscus astutus</td>
<td>Ringtail</td>
<td>NMS</td>
<td>High</td>
</tr>
<tr>
<td>Vulpes vulpes</td>
<td>Red fox</td>
<td>NMS</td>
<td>Moderate</td>
</tr>
<tr>
<td>Ochotona princeps nigrescens</td>
<td>Goat peak pika</td>
<td>NMS, FSOC</td>
<td>Low</td>
</tr>
<tr>
<td>Lilium philadelphicum var. andinum</td>
<td>Wood lily</td>
<td>NME</td>
<td>High</td>
</tr>
<tr>
<td>Cyripedium calceolus var. pubescens</td>
<td>Greater yellow lady’s slipper</td>
<td>NME</td>
<td>Moderate</td>
</tr>
<tr>
<td>Speyeria nokomis nitocris</td>
<td>New Mexico silverspot butterfly</td>
<td>FSOC</td>
<td>Moderate</td>
</tr>
<tr>
<td>Mentzelia springeri</td>
<td>Springer’s blazing star</td>
<td>NMSOC, FSOC, FSS</td>
<td>Moderate</td>
</tr>
</tbody>
</table>

¹C = Federal Candidate Species; E = Federal Endangered; FSOC = Federal Species of Concern; FSS = Forest Service Sensitive Species; NME = New Mexico Endangered; NMS = New Mexico Sensitive Taxa (informal); NMSOC = New Mexico Species of Concern; NMT = New Mexico Threatened; PE = Proposed Endangered; PT = Proposed Threatened; S1 = Heritage New Mexico: Critically Imperiled in New Mexico; T = Federal Threatened.

²Low = No known habitat exists at the Laboratory. Moderate = Habitat exists, though the species has not been recorded recently. High = Habitat exists, and the species occurs at the Laboratory.

Migratory Bird Treaty Act

Under the Migratory Bird Treaty Act, it is unlawful “by any means or manner to pursue, hunt, take, capture [or] kill” any migratory birds, except as permitted by regulations issued by the U.S. Fish and Wildlife Service. As part of complying with the Laboratory’s Migratory Bird Treaty Act, Laboratory staff review projects for potential impacts to migratory birds, and staff carry out bird population monitoring projects. These efforts support DOE’s commitment to “promote monitoring, research, and information exchange related to migratory bird conservation and program actions that may affect migratory
birds . . .,” as stated in the September 12, 2013, Memorandum of Understanding between the DOE and the U.S. Fish and Wildlife Service.

In project reviews, Laboratory biologists provide specific comments for projects that have the potential to impact migratory birds, their eggs, or their nestlings. In general, projects that remove vegetation that may contain bird nests are scheduled before or after the bird nesting season. In 2019, staff did not find any projects out of compliance with migratory bird protection requirements. However, in April 2019, an active bird nest was removed from a structure by an employee. A fact-finding was held and several corrective actions were taken to ensure this does not happen again. It was reported to the U.S. Fish and Wildlife Service.

In 2019, the Laboratory continued annual breeding season and winter surveys for birds in all major habitat types and continued monitoring nest boxes for use by birds. As part of a long-term monitoring project at two open detonation sites and one open burning site, the Laboratory’s point count surveys and nest box monitoring results continue to suggest that operations at these sites are not negatively affecting bird populations. In addition, biologists captured and banded birds during the breeding season in Sandia Canyon to monitor breeding bird populations, and during fall migration in Pajarito Canyon to monitor use of Laboratory lands by migrating birds. In 2019, 1,926 birds were banded at the Laboratory.

Floodplain and Wetland Executive Orders

The Laboratory complies with Executive Order 11988, *Floodplain Management*, and Executive Order 11990, *Protection of Wetlands*, by preparing floodplain and wetland assessments for projects in floodplains or near wetlands. In 2019, two floodplain assessments were prepared: one was for a fencing project in Sandia Canyon (Technical Area 72) and the other was for a fencing project in Starmer’s Canyon (Technical Area 08). No violations of DOE’s floodplain/wetland environmental review requirements were recorded.

Invasive Species Executive Order

Current compliance with Executive Order 13751, *Safeguarding the Nation from the Impacts of Invasive Species*, is limited to staff identifying invasive species and working with maintenance crews to treat isolated invasive plant species populations. Larger, well-established populations of some species like Siberian elm (*Ulmus pumila*), Russian olive (*Elaeagnus angustifolia*), and saltcedar (*Tamarix ramosissima*) are removed opportunistically, in conjunction with other construction projects. Currently, there is not an established program to identify, treat, and track populations of invasive plant species. However, developing an invasive species best management practices document is a mitigation requirement of the Finding of No Significant Impact for the Final Supplemental Environmental Assessment for the Wildfire Hazard Reduction and Forest Health Improvement Program at Los Alamos National Laboratory, Los Alamos, New Mexico (DOE 2019c), and the Laboratory plans to meet this requirement in 2020. The Laboratory has developed an app for electronic devices that allows users to identify and mark the locations of invasive plant species so that they can track spread and plan for future removals. A current list of invasive species known to occur at LANL is presented below in Table 2-15.
Table 2-15. List of Common Names and Latin Names of Invasive Species Known to Occur at LANL

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Latin Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Giant leopard slug</td>
<td>Limax maximus</td>
</tr>
<tr>
<td>Eurasian collared-dove</td>
<td>Streptopelia decaocto</td>
</tr>
<tr>
<td>European starling</td>
<td>Sturnus vulgaris</td>
</tr>
<tr>
<td>Bull thistle</td>
<td>Cirsium vulgare</td>
</tr>
<tr>
<td>Canada thistle</td>
<td>Cirsium arvense</td>
</tr>
<tr>
<td>Cheatgrass</td>
<td>Bromus tectorum</td>
</tr>
<tr>
<td>Dalmatian toadflax</td>
<td>Linaria dalmatica</td>
</tr>
<tr>
<td>Field bindweed</td>
<td>Convolvulus arvensis</td>
</tr>
<tr>
<td>Jointed goatgrass</td>
<td>Aegilops cylindrica</td>
</tr>
<tr>
<td>Kochia</td>
<td>Kochia scoparia</td>
</tr>
<tr>
<td>Leafy spurge</td>
<td>Euphorbia esula</td>
</tr>
<tr>
<td>Lehmann lovegrass</td>
<td>Eragrostis lehmanniana</td>
</tr>
<tr>
<td>Mullein</td>
<td>Verbascum spp.</td>
</tr>
<tr>
<td>Myrtle spurge</td>
<td>Euphorbia myrsinites</td>
</tr>
<tr>
<td>Nodding plumeless thistle</td>
<td>Carduus nutans</td>
</tr>
<tr>
<td>Oxeye daisy</td>
<td>Leucanthemum vulgare</td>
</tr>
<tr>
<td>Puncturevine</td>
<td>Tribulus terrestris</td>
</tr>
<tr>
<td>Redtop</td>
<td>Agrostis gigantea</td>
</tr>
<tr>
<td>Rough cocklebur</td>
<td>Xanthium strumarium</td>
</tr>
<tr>
<td>Russian knapweed</td>
<td>Acroptilon repens</td>
</tr>
<tr>
<td>Russian olive</td>
<td>Elaeagnus angustifolia</td>
</tr>
<tr>
<td>Russian thistle</td>
<td>Salsola kali</td>
</tr>
<tr>
<td>Saltcedar</td>
<td>Tamarix ramosissima</td>
</tr>
<tr>
<td>Scotch cotton thistle</td>
<td>Onopordum acanthium</td>
</tr>
<tr>
<td>Siberian elm</td>
<td>Ulmus pumila</td>
</tr>
<tr>
<td>Smooth brome</td>
<td>Bromus inermis</td>
</tr>
<tr>
<td>Teasel</td>
<td>Dipsacus spp.</td>
</tr>
<tr>
<td>Tree of heaven</td>
<td>Ailanthus altissima</td>
</tr>
<tr>
<td>Whitetop</td>
<td>Cardaria draba</td>
</tr>
<tr>
<td>Yellow salsify</td>
<td>Tragopogon dubius</td>
</tr>
</tbody>
</table>

Federal Insecticide, Fungicide, and Rodenticide Act; New Mexico Pesticide Control Act; and National Pollutant Discharge Elimination System Pesticide General Permit

Two laws and one nationwide Clean Water Act permit regulate how the Laboratory uses and reports its use of pesticides (chemicals that destroy plant, fungal, or animal pests). The Federal Insecticide, Fungicide, and Rodenticide Act regulates the distribution, sale, and use of pesticides. The New Mexico Pesticide Control Act regulates (1) the licensing and certification of pesticide workers, (2) record keeping, (3) equipment inspection, (4) application of pesticides, and (5) storage and disposal of pesticides. The National Pollutant Discharge Elimination System Pesticide General Permit requires annual reporting of pesticide use to the U.S. Environmental Protection Agency.
In 2019, pesticide usage was reported to the U.S. Environmental Protection Agency in accordance with the National Pollutant Discharge Elimination System Pesticide General Permit. Table 2-16 shows the amounts of pesticides the Laboratory used in 2019.

Table 2-16. Pesticides used in 2019

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Velossa</td>
<td>18.21 gallons</td>
</tr>
<tr>
<td>Ranger Pro Herbicide</td>
<td>35.19 gallons</td>
</tr>
<tr>
<td>Insecticide</td>
<td></td>
</tr>
<tr>
<td>Maxforce Complete Brand Granular Insect Bait</td>
<td>0.41 pounds</td>
</tr>
<tr>
<td>Summit B.T.I Briquets</td>
<td>0.25 briquets</td>
</tr>
<tr>
<td>Tempo SC Ultra Insecticide</td>
<td>0.0062 pounds</td>
</tr>
<tr>
<td>PT Wasp Freeze II and Hornet Insecticide</td>
<td>0.48 pounds</td>
</tr>
<tr>
<td>Vikon S</td>
<td>0.009 gallons</td>
</tr>
<tr>
<td>Water Treatment Chemical</td>
<td></td>
</tr>
<tr>
<td>Garratt-Callahan Formula 314-T</td>
<td>114 pounds</td>
</tr>
<tr>
<td>Garrett-Callahan Formula 316</td>
<td>6 pounds, 5 ounces</td>
</tr>
<tr>
<td>Houghton Chemical Purobrom Tablets</td>
<td>3,692 pounds</td>
</tr>
</tbody>
</table>

DOE Order 231.1B, *Environment, Safety, and Health Reporting*

DOE Order 231.1B, *Environment, Safety, and Health Reporting*, requires the timely collection and reporting of information on environmental issues that could adversely affect the health and safety of the public and the environment at DOE sites. This report fulfills DOE Order 231.1B requirements to publish an annual site environmental report.

The intent of this report is to

- characterize site environmental management performance, including effluent releases, environmental monitoring, types and quantities of radioactive materials emitted, and radiological doses to the public;
- summarize environmental occurrences and responses reported during the calendar year;
- confirm compliance with environmental standards and requirements;
- highlight significant programs and efforts, including environmental performance indicators, performance measures programs, or both; and
- summarize property clearance activities.

Emergency Planning and Community Right-to-Know Act

The Emergency Planning and Community Right-to-Know Act requires emergency plans for more than 360 hazardous substances, if they are present at a facility in amounts above specified thresholds. Under this act, the Laboratory is required to notify state and local officials and the community about the following items: (1) changes at the Laboratory that might affect the local emergency plan or if the
Laboratory’s emergency planning coordinator changes; (2) leaks, spills, and other releases of listed chemicals into the environment, if these releases exceed specified quantities; (3) the annual inventory of the quantities and locations of hazardous chemicals above specified thresholds present at the facility; and (4) total annual releases to the environment of listed chemicals that exceed specified thresholds.

Table 2-17 identifies what community and emergency planning reporting the Laboratory performed in 2019.

Table 2-17. Status of Emergency Planning and Community Right-To-Know Act Reporting in 2019

<table>
<thead>
<tr>
<th>Emergency Planning and Community Right-To-Know Act Section</th>
<th>Description of Reporting</th>
<th>Status (Yes, No, or Not Required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 302–303</td>
<td>Planning notification</td>
<td>Not required</td>
</tr>
<tr>
<td>Section 304</td>
<td>Extremely hazardous substance or hazardous substance release notification</td>
<td>Not required</td>
</tr>
<tr>
<td>Section 311–312</td>
<td>Material safety data sheet/ Hazardous chemical inventory</td>
<td>Yes</td>
</tr>
<tr>
<td>Section 313</td>
<td>Toxics release inventory reporting</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For Section 313 reporting, the listed chemicals that met the criteria for reporting in 2019 were lead and mercury. In 2019, the largest use of reportable lead and mercury was from offsite waste transfers. Table 2-18 summarizes the reported releases in 2019. There are no compliance violations associated with this use or release of lead or mercury.

Table 2-18. Summary of 2019 Total Annual Releases under Emergency Planning and Community Right-to-Know Act, Section 313

<table>
<thead>
<tr>
<th>Reported Release</th>
<th>Lead (pounds)</th>
<th>Mercury (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air emissions</td>
<td>3.7</td>
<td>0.86</td>
</tr>
<tr>
<td>Water discharges</td>
<td>0.24</td>
<td>0.003</td>
</tr>
<tr>
<td>Onsite land disposal (firing range)</td>
<td>1,845</td>
<td>0</td>
</tr>
<tr>
<td>Offsite waste transfers</td>
<td>15,901</td>
<td>124</td>
</tr>
</tbody>
</table>

DOE Order 232.2A, Occurrence Reporting and Processing of Operations Information

DOE Order 232.2A, *Occurrence Reporting and Processing of Operations Information*, requires reporting of abnormal events or conditions that occur during facility operations. An “occurrence” is one or more events or conditions that may adversely affect workers, the public, property, the environment, or DOE’s mission. Reportable environmental occurrences at the Laboratory for 2019 are listed in Table 2-19. For some programs that provide information on a fiscal year basis in this report, occurrences that were reported during October through December of 2018 were provided in the Environmental Occurrences table in the 2018 Annual Site Environmental Report.
Table 2-19. 2019 Environmental Occurrences

<table>
<thead>
<tr>
<th>Title</th>
<th>Description and Comments</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Receipt of Notice of Deficiency for Class B Violations of an Aboveground Storage Tank</td>
<td>At 0800 on Thursday, May 2, 2019, Triad received a Notice of Deficiency from the New Mexico Environment Department Petroleum Storage Tank Bureau for Class B compliance violations of the Technical Area 03, Building 2459 Aboveground Storage Tank. Specifically, the Notice of Deficiency cited violations of the New Mexico Administrative Code for failure to replace degraded piping and to install an anti-siphon valve on the tank. Per the Notice of Deficiency, LANL must correct the violations within 30 days of the notice to avoid issuance of a Notice of Intent to Red Tag the tank by the New Mexico Environment Department. In response, LANL initiated an expedited procurement of a certified aboveground storage tank installer to correct the violations. The tank remains fully operational. Absorbent pads were affixed to the piping to reduce the potential release of diesel oil until repairs could be completed. There has been no identified impact to soil, surface water, or groundwater.</td>
<td>Closed</td>
</tr>
<tr>
<td>Receipt of Notice of Violation with Proposed Civil Penalties for Violations of LANL’s Hazardous Waste Operating Permit</td>
<td>On Wednesday, August 21, 2019, the Triad Utilities & Institutional Facilities Facility Operations Director designee received a Notice of Violation from the New Mexico Environment Department for 11 alleged violations of the New Mexico Hazardous Waste Permit Regulations and LANL’s Hazardous Waste Operating Permit. Specifically, the Notice of Violation cited violations for Triad’s alleged failure to properly store, characterize, label, and maintain record keeping of hazardous waste. The New Mexico Environment Department proposed to assess civil penalties to settle the alleged violations.</td>
<td>Closed</td>
</tr>
<tr>
<td>Dump Truck Leaks Hydraulic Fluid During Operations at Technical Area 55</td>
<td>At 0910, on Wednesday, June 5, 2019, a Triad Roads and Grounds worker was operating a dump truck at Technical Area 55 near building 314 when the filter on the dump truck’s hydraulic system failed, releasing approximately 30 gallons of hydraulic fluid onto a graveled surface. When the operator noticed the leaking hydraulic fluid, he immediately paused work, turned off the engine, and began spill response procedures. The operator set up a barricade around the leaked fluid, deployed a spill kit, and contacted the project superintendent. The project superintendent notified the Operations Center and Environment, Safety, and Health personnel. A team was immediately deployed to begin excavating the contaminated soil under an active emergency excavation permit. Approximately 230 cubic feet of contaminated soil was removed and placed into sealed containers. The containers were turned over to a Waste Management Coordinator for proper disposal, and the site was covered and secured for follow-up soil sampling. Work in the area remained paused until confirmatory soil samples could be taken. There was no impact to the health and safety of workers.</td>
<td>Closed</td>
</tr>
<tr>
<td>Title</td>
<td>Description and Comments</td>
<td>Status</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Technical Area 54 Technical Safety Requirement Violation; Training Deficiency Identified with the List of Qualified Individuals at Technical Area 54</td>
<td>On November 26, 2018, the N3B Technical Area 54 Facility Operations Manager was notified of a training deficiency. The List of Qualified Individuals did not capture the periodic lockout/tagout training requirement. All Shift Operations Supervisors, Operations Center Operators, and Nuclear Operators fell out of qualification when the training expired on November 26. This was not recognized until November 26, 2018, when training personnel were performing an internal audit of training records. Because the operations center staff fell out of qualification, minimum staffing requirements per the Technical Area 54 Area G Technical Safety Requirements could not be met. Immediate actions taken by Facility Operations paused all work and placed the facility into warm standby. A shift order was published; this order prohibited work that required lockout/tagout and lockout/tagout refresher training for all operations staff. This training was scheduled for the next day.</td>
<td>Closed</td>
</tr>
<tr>
<td>Receipt of Notice of Violation with proposed civil penalties from New Mexico Environment Department</td>
<td>On August 21, 2019, the N3B Technical Area 54 Facility Operations Director was notified of a Notice of Violation by letter from the New Mexico Environment Department. The New Mexico Environment Department conducted a hazardous waste Compliance Evaluation Inspection during the week of April 29, 2019, and determined that LANL violated the New Mexico Hazardous Waste Management Regulations or LANL’s Hazardous Waste Operating Permit. The notice of violation cited 16 violations that require LANL to provide a written description of the actions taken to address the violations. Five of the 16 cited violations are the responsibility of N3B, and the rest of the violations are the responsibility of Triad. Additionally, the New Mexico Environment Department issued a Notice of Proposed Penalty letter related to the notice of violation, with proposed civil penalties to settle the violations.</td>
<td>Closed</td>
</tr>
</tbody>
</table>

DOE Order 436.1, Departmental Sustainability

The purpose of this DOE order is to ensure that the DOE carries out its missions in a sustainable manner that addresses national energy security and global environmental challenges. As directed by this order, the Laboratory had adopted an Environmental Management System and prepares and implements an annual Site Sustainability Plan. We discuss LANL’s Environmental Management System and its Site Sustainability Plan in detail in Chapter 3.

INSPECTIONS AND AUDITS

Table 2-20 lists the environmental inspections conducted by regulating agencies and external auditors at the Laboratory during 2019.
Table 2-20. Environmental Inspections and Audits Conducted at the Laboratory during 2019

<table>
<thead>
<tr>
<th>Date</th>
<th>Purpose</th>
<th>Performing Entity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/21/2019–10/24/2019</td>
<td>Enterprise Assessments</td>
<td>DOE Headquarters/Office of Enterprise Assessments</td>
</tr>
<tr>
<td>9/12/19</td>
<td>Waste Control Specialists Annual Recertification Audit</td>
<td>Waste Control Specialists</td>
</tr>
<tr>
<td>1/28/2019–1/31/2019</td>
<td>Generator Site Technical Review</td>
<td>Carlsbad Field Office and Nuclear Waste Partnership</td>
</tr>
</tbody>
</table>

UNPLANNED RELEASES

Air Releases

In 2019, there were no unplanned air releases.

Liquid Releases

In 2019, Triad made 20 reports of unplanned liquid releases to the New Mexico Environment Department as required by the New Mexico Water Quality Control Commission regulations (Table 2-21). Corrective actions were taken for all liquid releases; all corrective actions were communicated to the New Mexico Environment Department.

One unplanned release of treated effluent occurred at the TA-50 Radioactive Liquid Waste Treatment Facility on Laboratory property. Approximately two gallons of treated effluent leaked from a faulty valve; the effluent was contained on a concrete pad located at the facility. The release occurred during a discharge to NPDES Outfall 051; the water met NPDES permit discharge limits and DP-1132 effluent levels for Outfall 051.

Table 2-21. 2019 Unplanned Reportable Releases

<table>
<thead>
<tr>
<th>Material Released</th>
<th>Number of Instances</th>
<th>Approximate Total Release (Gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potable Water</td>
<td>8</td>
<td>289,935</td>
</tr>
<tr>
<td>Sanitary Waste Water</td>
<td>3</td>
<td>5,175</td>
</tr>
<tr>
<td>Treated Sanitary Effluent</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>Potable Water Comingled with Coolant/Cutting Oil</td>
<td>1</td>
<td>500</td>
</tr>
<tr>
<td>Hydraulic Fluid</td>
<td>5</td>
<td>97</td>
</tr>
<tr>
<td>Concrete Washout Water</td>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>Treated Effluent from Radioactive Liquid Waste Treatment Facility</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
SITE RESILIENCE

Updated in 2018, the National Climate Assessment explains what current and future climate change is likely to mean for the United States (Gonzalez et al. 2018). Predictions are made for temperature, precipitation (including snowpack), and wildland fires. DOE Order 436.1, Departmental Sustainability, directs the Laboratory to determine how its facilities and operations can mitigate risks associated with climatic factors, such as increasing temperatures and increasing wildland fire risk, and to identify the types of facilities/operations that could be impacted.

In 2015, LANL began tracking climatic risk indices related to temperature, precipitation, wind, indicator species, and storm water flow. These indices will assist the Laboratory in identifying when actions are necessary to protect facilities and operations. Below are the results of indices available in 2019.

Temperature

Temperature data have been collected in Los Alamos since 1910. Long-term trends in annual average temperatures are reported in the Meteorological Monitoring section of Chapter 4 and are shown in Figure 2-2. The temperatures between 1960 and 2000 had no trend. The years 2001–2010 were approximately 1.5 degrees Fahrenheit (°F) warmer than the previous 40 years, and the years 2011–2018 were approximately 3 °F warmer than the 1960–2000 averages. When average temperatures are broken down into summer and winter minimums and maximums, the summer minimum temperatures (graphed in Figure 2-3) demonstrate the strongest increasing trend from 1990 onward (an increase of approximately 4 °F).

Figure 2-2. Annual average temperatures for Los Alamos. The dashed lines represent long-term climatological average temperatures, the black line represents the 5-year running average temperature, and the green line represents the 1-year average.
Figure 2-3. Average summer (June, July, August) Los Alamos temperatures. The dashed lines represent the trend line for maximum, minimum, and average summer temperatures, which show that summer temperatures have been continuously increasing since 1990.

Similar to the annual average temperature, heating and cooling degree days did not exhibit any trend during 1950–1990. Since 1990, cooling degree days (Figure 2-4) have increased and heating degree days (Figure 2-5) have decreased. Thus, less energy has been needed to heat buildings, but more energy has been needed to cool buildings.

Figure 2-4. Los Alamos cooling degree days per year. The dashed line represents the trend line for cooling degree days, which shows cooling degree days have increased, resulting in more energy needed to cool buildings.
Figure 2-5. Los Alamos heating degree days. The dashed line represents the trend line for heating degree days, which shows that heating degree days have decreased, resulting in less energy needed to heat buildings.

Wind Speed

The annual average wind speed measured at the Laboratory’s meteorological tower of record at Technical Area 06 has increased approximately 20 percent over the past 25 years (Figure 2-6). Although not shown here, the monthly average wind speed during spring months (windiest months) shows an increase by approximately 1 meter per second. Winds are produced by low- and high-pressure weather systems that move across New Mexico. Near the ground’s surface, wind speeds are also influenced by the type of vegetation present (for example, forests versus grasslands). The Laboratory’s current hypothesis is that the extensive loss of trees in the local area caused by wildfires, drought, and bark beetle infestations has led to a decrease in the amount of wind resistance provided by trees, allowing wind speeds near the surface to increase. There is no trend in the annual peak gusts recorded at Technical Area 06 since 1990 (Kelly et al. 2015).
Figure 2-6. Technical Area 06 annual average wind speed at 12 meters above the ground. The dashed line represents the trend line for wind speed, which shows the annual average wind speed has been increasing since 1994.

Annual Red Flag Warnings

The National Weather Service issues Red Flag Warnings when critical weather conditions may result in extreme fire behavior. The National Weather Service began recording the number of Red Flag Warnings per year for the Los Alamos area in 2012 (Figure 2-7). Red Flag Warnings have increased over the past 4 years, but since 2012, there has not been a trend. Some Laboratory operations, including explosives testing, are restricted on days when the National Weather Service issues Red Flag Warnings.

If the following weather conditions occur simultaneously for 3 or more hours, a Red Flag Warning can be issued.

- Sustained winds at or above 20 miles per hour
- Relative humidity less than 15 percent
- Above-average temperatures
Figure 2-7. Number of National Weather Service Red Flag Warning days for zone 102 (Los Alamos). Since 2015, there has been an increase in the number of red flag days, but overall there has not been a trend.

Precipitation

The Laboratory analyzed the annual average precipitation (Figure 2-8) and the number of days per year with heavy rain events (Figure 2-9). From 1924 through 2010, the annual average precipitation was 18 inches, with a standard deviation of 4.4 inches. A long-term drought began in 1998, with precipitation under 15 inches between 2000 and 2003 and again in 2011 and 2012. Annual precipitation values were as low as 10 inches in 2003 and 2012.

The frequency of heavy rain events (Figure 2-9), defined as precipitation greater than 0.5 inches in one day, does not demonstrate a significant long-term trend since 1950. Although not shown here, there is also no trend in the heaviest events (precipitation greater than 0.75 inches or greater than 1.0 inch per day) in the past 50 years.
Figure 2-8. Annual precipitation totals for Los Alamos. The dashed lines represent long-term climatological average total precipitation, the black line represents the 5-year running average precipitation, and the green line represents the 1-year total precipitation. Significant drought since the 1990s has resulted in below-average precipitation in many recent years.

Figure 2-9. Number of days per year with precipitation greater than 0.5 inches. The dashed line represents the trend line for days with precipitation greater than 0.5 inches. The slight decreasing trend since 1950 is not statistically significant.

Annual average snowfall (Figure 2-10) demonstrates a decrease in the long-term trend since 1950. Since the drought began in 1998, there have been only three years with above-average recorded snowfall (1981–2010 average = 57 inches).
Climatic Summary

Average temperatures in Los Alamos have increased over the past 15 to 25 years, consistent with predictions from the National Climate Assessment for the southwestern United States. The annual average temperatures for the southwest are predicted to rise by 3.7 °F–4.8 °F by 2036–2065, and the temperatures measured at Los Alamos are consistent with these predictions. Increases in cooling degree days and reductions in heating degree days will produce increased summer air-conditioning costs and reduced winter heating costs.

Although predictions of changes in precipitation are less certain than temperature predictions, the National Climate Assessment predicts decreasing winter and spring precipitation in the southwest. The Laboratory’s data are consistent with these predictions, in particular over the last 22 years, with below-average snowfall in 86 percent of the years. The National Climate Assessment does not make a specific prediction for the southwest for heavy precipitation events. The Laboratory’s data do not show a trend in heavy precipitation events in Los Alamos.

The National Climate Assessment predicts increasing wildland fires in the southwest as a result of warming, drought, and insect outbreaks. Two major wildland fires have impacted the Laboratory in the past 20 years: the 2000 Cerro Grande fire and the 2011 Las Conchas fire. Precursors to these fires included warm, dry years, and local bark beetle infestations (LANL 2012). The Los Alamos data are consistent with predictions of increasing wildland fires. The annual average wind speed has been increasing, likely related to the reduction in forest cover caused by tree mortality. Increases in average wind speeds affect emergency planning in the event of an aerial release of hazardous substances.
This page intentionally blank.
SUMMARY OF PERMITS AND LEGAL ORDERS

Table 2-22 presents the environmental permits and legal orders under which the Laboratory operated in 2019.

Table 2-22. Environmental Permits and Legal Orders under which the Laboratory Operated in 2019

<table>
<thead>
<tr>
<th>Name</th>
<th>Activity</th>
<th>Issuing and Revision Dates</th>
<th>Expiration Date</th>
<th>Administering Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Alamos National Laboratory Hazardous Waste Facility Permit</td>
<td>A permit regulating management of hazardous wastes at the Laboratory, including storage and treatment. This permit also has standards for closure of indoor and outdoor areas used for hazardous waste storage or treatment. https://www.env.nm.gov/hazardous-waste/lanl-permit/</td>
<td>Renewed November 2010</td>
<td>December 2020</td>
<td>New Mexico Environment Department</td>
</tr>
<tr>
<td>Administrative Compliance Order No. HWB-14-20</td>
<td>An order issued for violations of the Hazardous Waste Act and the Laboratory’s Hazardous Waste Facility Permit associated with the Waste Isolation Pilot Plant drum breach. As part of the settlement, DOE is funding a series of projects, including road improvements on transport routes to the Waste Isolation Pilot Plant. https://www.energy.gov/sites/prod/files/2015/01/f19/LANL%20ACO%2020120614.pdf</td>
<td>• Issued December 6, 2014</td>
<td>None</td>
<td>New Mexico Environment Department</td>
</tr>
<tr>
<td></td>
<td>• Revised October 29, 2012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Replaced by 2016 Compliance Order on Consent on June 24, 2016</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2016 Compliance Order on Consent modified February 2017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Activity</td>
<td>Issuing and Revision Dates</td>
<td>Expiration Date</td>
<td>Administering Agency</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
<td>-----------------</td>
<td>---</td>
</tr>
</tbody>
</table>
• Amended May 20, 1997 | None | New Mexico Environment Department |
• Effective October 1, 2014
• Modified May 1, 2015
• Permit Reapplication Submitted March 26, 2019
• Administratively Continued
• October 22, 2019 | September 30, 2019 [administratively continued until new permit becomes effective] | U.S. Environmental Protection Agency |
• Reissued October 31, 2016 | October 31, 2021 | U.S. Environmental Protection Agency |
| **Clean Air Act, Title V Operating Permit** | A permit regulating air emissions from Laboratory operations (for example, emissions from the power plant, asphalt batch plant, and permanent generators). These emissions are subject to operating, monitoring, and recordkeeping requirements. https://cswab.org/wp-content/uploads/2017/04/Los-Alamos-Final-P100R2-Title-V-permit-2015.pdf | • Issued August 7, 2009
• Reissued October 17, 2018 | February 27, 2020 | New Mexico Environment Department |
<table>
<thead>
<tr>
<th>Name</th>
<th>Activity</th>
<th>Issuing and Revision Dates</th>
<th>Expiration Date</th>
<th>Administering Agency</th>
</tr>
</thead>
</table>
| New Mexico Air Quality Control Act Construction Permits | Permits regulating construction or modification of air emissions sources, including the following:
- Technical Area 03 power plant Permit modification 2 (NSR 2195-B-M2)
- Asphalt plant at Technical Area 60 Permit revision 1 (GCP3-2195-G)
- 1600-kilowatt generator at Technical Area 33 Permit revision 4 (NSR 2195-F R4)
- Two 20-kilowatt generators and one 225-kilowatt generator at Technical Area 33 (NSR 2195-P)
- Data disintegrator (NSR 2195-H R1)
- Chemistry and Metallurgy Research Replacement facility, Radiological Laboratory/Utility/Office Building Permit revision 2 (NSR 2195-N)
- LANL exemption notifications—rock crusher removed (NSR 2195)
- Technical Area 35, building 213, beryllium machining (NSR 632 R1)
- Technical Area 03, building 141, beryllium technology facility (NSR 634 M2R1)
- Technical Area 55 beryllium machining (NSR 1081 M1R7) | • Issued September 27, 2000
• Reissued November 1, 2011
• Issued October 29, 2002
• Reissued September 12, 2006
• Issued October 10, 2002
• Reissued December 12, 2013 | None | None |
| | | | | New Mexico Environment Department |
Chapter 2 – Compliance Summary

<table>
<thead>
<tr>
<th>Name</th>
<th>Activity</th>
<th>Issuing and Revision Dates</th>
<th>Expiration Date</th>
<th>Administering Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean Water Act, Section 404/401 Permits</td>
<td>The U.S. Army Corps of Engineers authorizes certain work within watercourses at the Laboratory under Clean Water Act Section 404 permits. The projects below were authorized to operate under a Section 404 nationwide permit with Section 401 certification.</td>
<td>Effective March 19, 2017 (all current nationwide Section 404 permits); a previous version was in effect until March 18, 2017.</td>
<td>March 18, 2022 (all current nationwide Section 404 permits)</td>
<td>U.S. Army Corps of Engineers and New Mexico Environment Department (all permits and verifications)</td>
</tr>
<tr>
<td></td>
<td>- Mid–Mortandad Supplemental Environmental Project</td>
<td>Permit verification received March 27, 2018; completion of project is pending.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Upper Cañon de Valle Supplemental Environmental Project</td>
<td>Permit verification received March 21, 2018; project completed on April 30, 2019.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clean Water Act, Section 404/401 Permits (cont.)</td>
<td>The following projects had an ongoing annual monitoring requirement:</td>
<td>Annual monitoring and reporting required through 2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Sandia Canyon, Technical Area 72 firing site storm water controls</td>
<td>Annual monitoring and reporting required through 2021</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Water Canyon storm drain reconstruction project</td>
<td>Annual monitoring and reporting required through 2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mortandad Wetlands Enhancement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Activity</td>
<td>Issuing and Revision Dates</td>
<td>Expiration Date</td>
<td>Administering Agency</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>---------------------------------</td>
<td>-----------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| [Individual Permit] Authorization to Discharge [from Solid Waste Management Units and Areas of Concern] Under the National Pollutant Discharge Elimination System | A permit authorizing the Laboratory to discharge storm water from 405 Solid Waste Management Units and Areas of Concern under specific conditions. Conditions include requirements for monitoring and for corrective actions where necessary to minimize pollutants in the storm water discharges. (https://www.env.nm.gov/swqb/documents/swqbdocs/NPDES/Permits/NM0030759-LANLStormwater.pdf) | Issued November 1, 2010 | • October 31, 2015
• Application for renewal submitted to the U.S. Environmental Protection Agency in 2019
• Administratively extended by the U.S. Environmental Protection Agency, pending issuance of new permit | U.S. Environmental Protection Agency |
<p>| The United States Energy Independence and Security Act of 2007, Section 438 | The sponsor of any development or redevelopment project involving a federal facility with a footprint that exceeds 5,000 square feet shall use site planning, design, construction, and maintenance strategies for the property to maintain or restore, to the maximum extent technically feasible, the predevelopment hydrology of the property with regard to temperature, rate, volume, and flow duration. | Issued December 19, 2007 | None | U.S. Environmental Protection Agency |</p>
<table>
<thead>
<tr>
<th>Name</th>
<th>Activity</th>
<th>Issuing and Revision Dates</th>
<th>Expiration Date</th>
<th>Administering Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater Discharge Permit DP-857</td>
<td>A permit authorizing discharges to groundwater from the Laboratory’s sanitary waste water system plant and the Sanitary Effluent Reclamation Facility.</td>
<td>Issued December 16, 2016</td>
<td>December 16, 2021</td>
<td>New Mexico Environment Department</td>
</tr>
<tr>
<td>Groundwater Discharge Permit DP-1589</td>
<td>A permit authorizing discharges to groundwater from the Laboratory’s eight septic tank/disposal systems.</td>
<td>Issued July 22, 2016</td>
<td>July 22, 2021</td>
<td>New Mexico Environment Department</td>
</tr>
<tr>
<td>Groundwater Discharge Permit DP-1793</td>
<td>A permit authorizing discharges to groundwater from the Laboratory’s land application of treated groundwater.</td>
<td>Issued July 27, 2015</td>
<td>July 27, 2020 Transferred to N3B on April 30, 2018</td>
<td>New Mexico Environment Department</td>
</tr>
<tr>
<td>Groundwater Discharge Permit DP-1835</td>
<td>A permit authorizing discharges to groundwater from the Laboratory’s injection of treated groundwater into six Class V underground injection control wells.</td>
<td>Issued August 31, 2016</td>
<td>December 1, 2021 Transferred to N3B on April 30, 2018</td>
<td>New Mexico Environment Department</td>
</tr>
<tr>
<td>Groundwater Discharge Permit DP-1132</td>
<td>A permit authorizing discharges to groundwater from the Laboratory’s Radioactive Liquid Waste Treatment Facility to three discharge locations: Outfall 051, mechanical evaporator system, or solar evaporation tank system.</td>
<td>Pending. Discharges occurring under Temporary Permission authorized by New Mexico Environment Department.</td>
<td>Pending</td>
<td>New Mexico Environment Department</td>
</tr>
</tbody>
</table>
QUALITY ASSURANCE

Waste Management

Triad’s program for waste management, including quality assurance, is described in the institutional procedure P409, *LANL Waste Management*, and flow-down documents.

Air Quality and Protection

Air quality compliance activities are performed in accordance with the procedures and processes described in EPC-CP-QAP-001, *Environmental Compliance Programs Quality Assurance Plan*; EPC-CP-QAP-901, *EPC-CP Quality Procedure to Supplement ADESH-0007, Document Control*; and a series of Program Implementation Plans (PIPs):

- EPC-CP-PIP-0101, *Rad-NESHAP Compliance Program*
- EPC-CP-PIP-0340, *Title V Operating Permit Program*
- EPC-CP-PIP-0301, *Greenhouse Gas Monitoring and Emissions Reporting*
- EPC-CP-PIP-0310, *Air Quality Refrigerants*
- EPC-CP-PIP-0320, *Emergency Planning and Community Right-to-Know Act (EPCRA) Section 313 Reporting*
- EPC-CP-PIP-0330, *Air Quality Regulatory Review and Permitting*
- EPC-CP-PIP-0370, *Asbestos NESHAP Compliance*
- EPC-CP-PIP-0380, *Beryllium NESHAP Compliance*

These documents ensure that compliance activities are planned, performed, and documented using approved procedures, data quality objectives, and integrated work processes. More than 20 detailed Quality Procedures (QPs) are in place that flow down from these Program Implementation Plans.

Air Quality Compliance team members conduct semi-annual internal inspections of all permitted sources using detailed checklists to ensure all permit requirements are met. Additionally, the New Mexico Environmental Department Air Quality Bureau conducts annual external inspections of LANL’s compliance with their Title V Operating Permit.

Analytical data are used to generate various compliance monitoring reports and deliverables submitted to regulatory agencies, as required by the permit. Each report is subjected to a quality peer review before submission to ensure data are correct and representative, and meet the established data quality objectives. All reports submitted to regulatory agencies are maintained as quality records in accordance with the permit and ADESH-QP-006, *Records Management Plan*.

Refrigerant program personnel also conduct internal semi-annual audits to ensure that refrigerant used in service, maintenance, repair, and disposal activities on refrigeration equipment is accounted for, thereby ensuring compliance with the no-venting prohibition under federal regulations.

Members of the Radioactive Air Emissions Management team conduct stack sampling and monitoring activities, sampler inspections, flow measurements, and data analyses to meet regulatory requirements. All activities are conducted per procedure and with peer review. Representatives of the U.S. EPA Region 6 periodically visit the site to evaluate operations. Analytical data calculations and compliance reports for the Radioactive Air Emissions Management team are subject to reviews similar to those described for the Air Quality Compliance program.
Surface Water Quality and Protection

Triad surface water compliance activities are performed in accordance with the procedures and processes described in EPC-CP-QAP-001, *Environmental Compliance Programs Quality Assurance Plan*; EPC-CP-QAP-901, *EPC-CP Quality Procedure to Supplement ADESH-0007*; and EPC-CP-QAPP-NPDES IPSP, *Quality Assurance Project Plan for the National Pollutant Discharge Elimination System Industrial Point Source Permit Self-Monitoring Program*. These documents ensure that compliance activities are planned, performed, and documented using approved procedures, data quality objectives, monthly/quarterly/yearly sampling plans, and integrated work processes. In 2019, the following procedures were used to collect samples, prepare discharge monitoring reports, and prepare reapplications surveys:

- ENV-DO-QP-100, *General Field Safety*
- ENV-RCRA-QP-037, *Performing National Pollutant Discharge Elimination System Reapplication Surveys*
- EPC-CP-QP-005, *Sampling at National Pollutant Discharge Elimination System Permitted Point Source Outfalls*
- EPC-CP-QP-060, *Preparing Discharge Monitoring Reports for the National Pollutant Discharge Elimination System Industrial Point Source Permit Self-Monitoring Program*

Surface water compliance samples are collected and the associated data are analyzed using established data quality objectives that define the appropriate type of data to collect and establish guidelines for the acceptance and use of the analytical data to make decisions regarding the compliance at each outfall. These data quality objectives are developed in accordance with U.S. Environmental Protection Agency QA/G-4, *Guidance for the Data Quality Objectives Process*.

In 2019, the following procedures were used to collect samples and prepare reports for the Triad Construction General Permit and the Multi-Sector General Permit programs:

National Pollutant Discharge Elimination System Construction General Permit:

- ENV-RCRA-QAPP-NPDES CGP, *Quality Assurance Project Plan for the NPDES Construction General Permit Program*
- EPC-CP-QP-2002, *Performing CGP Stormwater Inspections*
- EPC-CP-TP-2003, *CGP Rain Gage Operation and Maintenance*

National Pollutant Discharge Elimination System Multi-Sector General Permit:

- ENV-CP-QAPP-MSGP, *Quality Assurance Project Plan for Stormwater Multi-Sector General Permit for Industrial Activities Program*
- EPC-CP-TP-2102, *Installing, Setting Up, and Operating ISCO Samplers*
- EPC-CP-TP-2103, *Inspecting Stormwater Runoff Samplers and Retrieving Samples for the MSGP*
- EPC-CP-QP-027, *Installing, Inspecting, and Maintaining MSGP Single Stage Samplers*
- EPC-CP-QP-064, *MSGP Stormwater Visual Assessments*
- EPC-CP-QP-2106, *Processing MSGP Stormwater Samples*
- ENV-CP-QP-044, *Preparing Stormwater Discharge Monitoring Reports for the NPDES Multi-Sector General Permit*
- EPC-CP-QP-023, *MSGP Routine Facility Inspections*
- EPC-CP-QP-022, *MSGP Corrective Actions*
In 2019, N3B used the following procedures to collect samples and prepare reports for surface water monitoring under the Individual Permit, Multi-Sector General Permit, and environmental surveillance programs:

- N3B-AP-ER-5008, Verifying and Certifying Individual Permit Corrective Action Measures
- N3B-DI-ER-4010, Desk Instruction for Managing Electronic Precipitation Data for Storm Water Projects
- N3B-DI-ER-4011, Desk Instruction for Managing Electronic Stage and Discharge Data from Stream Gage Stations
- N3B-SOP-ER-3002, Spring and Surface Water Sampling
- N3B-SOP-ER-4001, Processing Surface Water Samples
- N3B-SOP-ER-4002, Splitting Surface Water Samples with a Dekaport Splitter
- N3B-SOP-ER-4003, Operation and Maintenance of Gage Stations for Storm Water Projects
- N3B-SOP-ER-4004, Installing, Setting Up and Operating Automated Storm Water Samplers
- N3B-SOP-ER-5002, Inspection, Installation, and Maintenance of Non-Engineered NPDES Individual Permit Storm Water Control Measures
- N3B-SOP-ER-5004, Inspecting Automated Storm Water Samplers and Retrieving Samples
- N3B-SOP-ER-5006, Determining and Evaluating Drainage Area Boundaries
- N3B-GDE-ER-5013, Inspection Guidance for Environmental Programs Watershed, Retention, and No Exposure Controls
- N3B-ER-GUIDE-5014, Geomorphic Characterization
- N3B-GDE-ER-5011, Hydrology for Individual Permit Corrective Actions and Control Measures—Design Guide
- N3B-SOP-ER-5016, Multi-Sector General Permit Quarterly Facility Inspection and Corrective Actions
- N3B-PLN-RGC-0002, Storm Water Pollution Prevention Plan Chromium Piping and Infrastructure Project Phase 5 – R-70 Drilling and Well Installation and CrIN-6 to CrEX-5
- N3B-PLN-RGC-0004, Storm Water Pollution Prevention Plan TA-21 DP Site Aggregate Area Demolition and Disposal Cleanup Project
- N3B-PLN-RGC-0006, Storm Water Pollution Prevention Plan for Technical Area 54 Maintenance Facility West
- N3B-PLN-RGC-0005, Storm Water Pollution Prevention Plan for Technical Areas G and L
- N3B-QP-RGC-003, Land Application of Drill Cuttings
- N3B-AP-RGC-0002, Minor Spill Response Reporting Procedure
- N3B-PLN-RGC-0001, Sediment Management Decision Tree Guidance
- N3B-PLN-RGC-0003, Un-permitted Discharge Reporting
- N3B-QP-RGC-0002, Land Application of Groundwater
- N3B-QP-RGC-0004, MSGP Stormwater Visual Assessments
CHAPTER 2 – COMPLIANCE SUMMARY

Groundwater Quality and Protection

Triad’s Groundwater Quality and Protection program operates in accordance with EPC-CP-QAP-001, *Environmental Compliance Programs Quality Assurance Plan*. Discharges to treatment facilities that are part of this program are conducted in accordance with the Laboratory’s P409-1, *Los Alamos National Laboratory Waste Acceptance Criteria*.

REFERENCES

This page intentionally blank.
Chapter 3 – ENVIRONMENTAL PROGRAMS

This chapter highlights the programs the Laboratory has in place to (1) comply with environmental laws and regulations and (2) reduce the risk of Laboratory operations adversely affecting the environment. All of the Laboratory’s environmental programs contribute to and are part of the Laboratory’s Environmental Management System.

We first discuss processes and programs that support Laboratory-wide activities to improve our environmental performance. These processes and programs include the Pollution Prevention Program, the Site Sustainability Program, the Site Cleanup and Workplace Stewardship Program, and the Project Review process.

Next we discuss our dedicated “core” programs that lead our compliance with specific environmental laws. Core programs are generally composed of subject matter experts who are knowledgeable in the requirements of laws such as the Clean Air Act, the Clean Water Act, the National Environmental Policy Act, and the Resource Conservation and Recovery Act.

Finally, we discuss the process the Laboratory uses to ensure that the results from its monitoring and compliance sampling meet DOE standards for data quality.

Figure 3-1. View looking northeast from the Main Hill road in Los Alamos (New Mexico State Road 502) toward the Rio Grande Valley and the Sangre de Cristo Mountains
INTRODUCTION

The Laboratory has three overarching objectives for our environmental performance: clean up the past, control the present, and create a sustainable future. This chapter describes the institutional processes and dedicated “core” programs we use to manage the Laboratory’s environmental performance. These institutional processes and programs combine to form the Environmental Management System.

INSTITUTIONAL PROCESSES AND PROGRAMS

Environmental Management System

Certification of the Laboratory’s Environmental Management System to the International Organization for Standardization’s 14001 Standard

The International Organization for Standardization is independent and nongovernmental. It brings together experts to develop voluntary international standards that provide solutions to global challenges. These standards describe the best practices for conducting a wide range of activities. The 14001 standard specifies the best practices for an environmental management system to improve an organization’s environmental performance, including reducing environmental impacts and waste and becoming more sustainable. The Laboratory has maintained independent, third-party certification for its environmental management system under the 14001 standard since April 2006. In 2017, the Laboratory’s environmental management system was certified under the updated 14001:2015 standard.

When the legacy waste cleanup contract was separated from the management and operating contract in 2018, each contractor organization took responsibility for its own Environmental Management System. Triad National Security, LLC, currently manages the certified Environmental Management System described above.

N3B is building its Environmental Management System to align with its specific procedures and work controls. The N3B Environmental Management System works toward conducting audits each year to seek International Organization for Standardization 14001 certification.

Environmental Management System Program Activities

The Deputy Laboratory Director for Operations chairs the Environmental Senior Management Steering Committee for the Laboratory’s management and operating contractor. The committee sets institutional objectives and annual targets for environmental performance. The three institutional objectives for the Laboratory’s environmental performance are (1) clean the past, (2) control the present, and (3) create a sustainable future.

Within these three objectives, the Laboratory’s Environmental Senior Management Steering Committee identified the following targets (desired actions) for the 2019 fiscal year.

Clean the Past - Targets

- Continue to implement the institutional Facility Footprint Reduction Plan
- Continue to disposition equipment, materials, and metals no longer in use
- Manage interfaces with the new environmental management contractor
Control the Present - Targets

- Maintain and improve environmental and waste management compliance programs, including educating line management and subcontract technical representatives
- Adopt and implement the Workplace Stewardship Policy
- Complete the Supplemental Environmental Projects associated with the Waste Isolation Pilot Plant Settlement Agreement
- Implement pollution prevention and federal sustainability requirements, including the LANL Site Sustainability Plan and selection of DOE-approved sustainable products
- Educate workers about environmental initiatives and successes
- Engage environmental subject matter experts at the conceptual phase of the site- and facility-planning processes by using the integrated review tool
- Encourage use of the environmental lifecycle process analysis tool
- Initiate environmental permit renewals early

Create a Sustainable Future - Targets

- Use pollution prevention practices to minimize and avoid generating wastes
- Develop and implement the path forward to meet energy and water sustainability goals
- Develop and implement environmentally sustainable solutions that improve energy, water, air, soil, radioactive material or waste management, equipment management, and chemical or material use

Evaluate resource vulnerabilities (e.g., water) that pose potential risks to mission

The Laboratory annually updates a list of the significant environmental aspects that could be associated with its activities. Table 3-1 lists and describes the environmental aspects identified for 2019, along with some example activities.

Managers and teams from each Laboratory directorate develop environmental action plans each year using the institutional objectives and targets, along with their evaluation of their own work activities. In 2019, we developed and tracked 234 actions in 12 of these action plans.
This page intentionally blank.
Table 3-1. LANL Significant Environmental Aspects

<table>
<thead>
<tr>
<th>Environmental Aspects</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air emissions</td>
<td>Activities that release or have the potential to release material into the air</td>
<td>• Point source air emissions from stacks, vents, ducts, or pipes
• Use of greenhouse gas contributors such as refrigerants, vehicles, and electricity generated with coal</td>
</tr>
<tr>
<td>Interaction with surface water and storm water</td>
<td>Activities that release or have the potential to release pollutants into a watercourse or through direct discharge to or contact with storm water (for example, discharge onto the ground near a waterway)</td>
<td>• Discharges from permitted outfalls
• Spills and unintended discharges
• Activity within the boundary of a watercourse</td>
</tr>
<tr>
<td>Discharge to waste water systems</td>
<td>Activities that release or have the potential to release material to or from a waste water treatment system (sanitary, chemical, or radiological)</td>
<td>• Laboratory sinks
• Kitchens and bathrooms
• Waste water collected and transported to a waste water facility</td>
</tr>
<tr>
<td>Interaction with drinking water supplies/systems or groundwater</td>
<td>Activities that release or have the potential to release material into a drinking water supply system or into the groundwater. This includes planned or unplanned releases onto the ground or into surface water that have the potential to migrate to groundwater. Impacts can be positive or negative.</td>
<td>• Cooling tower water supply use
• Installation or abandonment of groundwater wells or associated systems
• Land application of water or injection of treated water into an aquifer
• Septic systems and sanitary holding tanks
• Permitted waste water storage basins</td>
</tr>
<tr>
<td>Work within or near floodplains and wetlands</td>
<td>Building structures or impoundments in a floodplain or wetland, or activities that release or have the potential to release material onto or into a floodplain, wetland, or area of overland flow</td>
<td>• Monitoring well operations
• Structures built in a floodplain or wetland
• Activities or emergencies that disrupt the integrity of a floodplain or wetland</td>
</tr>
<tr>
<td>Interaction with wildlife and/or habitat</td>
<td>Activities that impact or have the potential to impact federally protected wildlife or their habitats, migratory birds, and other wildlife not managed under any federal law</td>
<td>• Removal of weeds, trees, brush, or invasive species
• Installation and operation of fencing, buildings, power lines, towers, drainage, or other structures
• Installation and operation of outdoor lighting
• Work operations that generate noise</td>
</tr>
<tr>
<td>Biological hazards</td>
<td>Activities that generate, use, or dispose of biological agents. This excludes human viral, bacterial, or bloodborne pathogens.</td>
<td>Management of medical materials and byproducts</td>
</tr>
<tr>
<td>Environmental Aspects</td>
<td>Description</td>
<td>Examples</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| Interaction with soil resources | Activities that disturb surface or subsurface soils, or release or have potential to release material onto or into the ground. This includes planned or unplanned deposition of airborne particulates and releases of solids or liquids onto or into the ground, and activities that may result in migration or deposition of radioactive constituents onto or into the ground. Activities may result from routine work or from emergency or off-normal events. | • Ground-disturbing activities—for example, construction, utility line repair, or maintenance of dirt roads
• Operations that result in point source air emissions from stacks, vents, ducts, or pipes
• Operations that are sources of diffuse air emissions such as open burning/open detonation, remediation activities, and decontamination and decommissioning projects
• New construction, site selection, brownfield vs. greenfield development |
| Spark- or flame-producing activities | Activities that cause or have the potential to start a fire or wildfire | • Off-road vehicle use
• Construction or outdoor maintenance work activities
• Outdoor spark- or flame-producing operations
• Smoking |
| Cultural/historical resources | Activities that impact or have the potential to impact cultural or historical resources. Resources include, but are not limited to, historical buildings, buildings of special significance, archaeological sites, traditional cultural properties, historic homesteads, and trails. Activities may result from routine work or from emergencies or off-normal events. | • Maintenance or expansion of existing areas (trails, walkways, roads, easements)
• Ground-disturbing activities below grade or surface areas
• Maintenance, modification, or demolition of structures, including potentially or designated historic structures
• Off-road vehicle use
• Vegetation removal and weed mitigation activities
• Archaeological excavations |
| Visual resources | Activities that impact or have the potential to impact visual landscapes | • Construction, management and maintenance of access roads, fencing, utility corridors, and power transmission systems
• Construction, management, and maintenance of staging areas, storage yards, debris piles, litter, and other “eye sores”
• Tree thinning
• Security or after-hours lighting |
| Hazardous or radioactive material and waste packaging and transportation | Activities that handle, package, or transport hazardous waste or radioactive materials | • Transportation of chemicals
• Transportation of low-level radiological waste, mixed low-level waste, or transuranic waste |
Environmental Aspects

<table>
<thead>
<tr>
<th>Environmental Aspects</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
</table>
| Radioactive waste generation and management | Activities that generate or manage (handle, store, or dispose of) radioactive waste | - Laboratory or research and development procedures using or generating radioactive material
- Cleanup of historical waste disposal areas
- Development of alternative processes or controls that reduce radioactive materials utilization and/or cross-contamination |
| Hazardous or mixed-waste generation and management | Activities that generate or manage (handle, store, treat, or dispose of) hazardous or mixed waste | - Laboratory or research and development procedures using or generating hazardous materials
- Disposal of unused, unspent laboratory chemicals |
| Solid or sanitary waste generation and management | Activities that generate or manage (handle, store, treat, or dispose of) nonhazardous and nonradioactive waste intended for disposal at a municipal or industrial waste landfill | - Laboratory, machining, and process operations wastes (nonhazardous or nonradioactive)
- Nonrecyclable waste—for example, some office waste and some construction and demolition debris |
| Interaction with contaminated sites | Activities that have the potential to increase or spread contamination because they are conducted within the boundary of or in close proximity to contaminated areas. Contaminated areas include solid waste management areas, radiological sites, nuclear facilities, or high-explosives sites. | - Construction
- Mitigation
- Demolition
- Open detonation |
| Chemical (industrial and laboratory) use and storage | Activities that result in the purchase, use, management, movement, or storage of chemicals. Activities may result from routine work or from emergency or off-normal events. | - Chemical use in research laboratories
- Vehicle operation and maintenance (fuels, coolants, lubricants, etc.)
- Building cleaning and maintenance (janitorial supplies)
- Application of pesticides, fertilizers, and other roads and grounds maintenance chemicals |
| Radioactive material use and storage | Activities that handle or store radioactive materials | - Radioactive material machining or processing
- Change in location of activities or operations involving work with radioactive materials
- Evaluation of processes and operations to increase efficient use of materials |
| Surplus properties and material management | Activities that manage (handle or store) in-use materials, surplus supplies, real estate, or other property | - Managing (leasing, renting, selling, or purchasing) active or inactive real estate; includes evaluation of property for contamination
- Managing (storing, using, recycling, reusing, disposing of) surplus property
- Cleanup and recommissioning of work areas
- Decontamination and decommissioning facilities |
<table>
<thead>
<tr>
<th>Environmental Aspects</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource use and conservation</td>
<td>Activities or practices that impact resource use and affect conservation,</td>
<td>• Applying sustainable design principles— for example, cool roofs, natural lightening,</td>
</tr>
<tr>
<td></td>
<td>may increase or reduce demand or wastes, or may drive increases in efficiency</td>
<td>insulated glass, recycled or low-impact building materials</td>
</tr>
<tr>
<td></td>
<td>of resource use (labor, natural material, energy, etc.), use of alternative</td>
<td>• Procuring alternative energy or fuel sources for the Laboratory</td>
</tr>
<tr>
<td></td>
<td>material, or reuse/recycling opportunities</td>
<td>• Amount or change in the amount of energy or water required for a scope of work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reusing and repurposing materials, equipment, and supplies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Purchasing “green” or environmentally preferable products</td>
</tr>
<tr>
<td>Storage of materials in tanks</td>
<td>Activities that involve handling or storing materials in tanks</td>
<td>Operating or maintaining aboveground tanks in accordance with the Laboratory’s hazardous</td>
</tr>
<tr>
<td></td>
<td></td>
<td>waste permit</td>
</tr>
<tr>
<td>Engineered nanomaterials</td>
<td>Activities involving intentionally created particles with one or more</td>
<td>• Nanotechnology research and development that generates nanoparticles requiring</td>
</tr>
<tr>
<td></td>
<td>dimensions between 1 and 100 nanometers</td>
<td>environmental or worker safety controls</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Nanoparticle waste characterization, packaging, storage, transport, treatment, or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>disposal</td>
</tr>
</tbody>
</table>
The online course *EMS - Environmental Awareness Training* is required for all employees, including subcontractors, who are onsite for longer than 2 weeks. Retraining is required every 2 years. The course is an overview of environmental requirements for the site.

The Environmental Management System Program has external audits and internal assessments every year. All findings and corrective actions generated from these audits and assessments are tracked to closure in an issues management system. In 2019, two external certification audits and one internal assessment found two minor nonconformities (a minor deficiency that does not seriously affect the efficiency of the Environmental Management System) related to waste management and document control, as well as several opportunities for improvement related to outdoor work areas, document control systems, performance tracking, and communications. In fiscal year 2019, the Laboratory’s Environmental Management System scored green on all of the following federal government metrics:

- Activities, products, and services and their associated environmental aspects were evaluated for significance and documented. Any necessary changes were made or are scheduled to be made.
- Measurable environmental objectives were in place.
- Operational controls were established, implemented, controlled, and maintained in accordance with operating criteria.
- An environmental compliance audit program was in place, and audits were completed according to schedule. Audit findings were documented, and corrective actions were implemented.
- As directed by Executive Order 13834, *Efficient Federal Operations*, sustainability goals were addressed.

Operating Experience Program

The Laboratory has an operating experience and lessons learned program called OPEX at LANL. The purpose of the program is to capture and apply lessons from past experiences and to communicate best practices to prevent or reduce the severity of future undesirable events. OPEX at LANL collects and distributes information from inside the Laboratory and from other sources, including the other DOE sites. The program provides an online database of relevant lessons and best practices for workers to use and share, as well as a quarterly publication that provides event trends, causes, and learning opportunities.

Pollution Prevention

The Laboratory’s Pollution Prevention Program works to reduce waste and pollution resulting from Laboratory operations. The program focuses on (1) reducing all types of radioactive waste; (2) funding and supporting projects that reduce or eliminate the use of hazardous chemicals; and (3) promoting the purchase of products that are energy efficient, water efficient, made of renewable materials, or non-ozone depleting; contain recycled content; or contain nontoxic or less-toxic substances. The program staff also support the Laboratory’s Site Sustainability Plan and prepare an annual Hazardous Waste Minimization Report for the New Mexico Environment Department.

The program supports site-wide initiatives to address environmental risks that may affect the successful completion of the LANL mission. For example, program staff are working with scientists and equipment managers to reduce the amount of water used by cooling towers so that operations can continue and expand using less additional groundwater. Program staff are also leading an effort to upgrade LANL’s
Chemical Management Program, which will reduce the amount of unused chemicals at the Laboratory that are disposed of as waste.

We recognize pollution prevention projects across the Laboratory through annual pollution prevention awards and internal and external communications. The following examples of 2019 pollution prevention projects illustrate the work of LANL scientists and engineers to achieve reduction of waste and pollution at its source at the Laboratory.

Dissolving Post-Detonation Debris with Ammonium Bifluoride

Nuclear forensics is the investigation of nuclear materials to find evidence for the source and enrichment levels of the material. This project explored using micro-X-ray fluorescence spectrometry as a prescreening tool and using ammonium bifluoride as a digestion reagent for dissolving samples. These methods have the potential to eliminate the use of the hazardous substance hydrofluoric acid in the prescreening process. This is a multi-year effort. In 2019, the researchers focused their efforts on the use of ammonium bifluoride on synthetic post-detonation debris to verify its efficacy. Ammonium bifluoride will next be tested on real-world nuclear forensic samples.

Benchtop Analysis of New Methods of Treating Silica in Water

LANL relies on cooling towers to cool supercomputing facilities and the Los Alamos Neutron Science Center. Cooling towers work as very large recirculating evaporative coolers. The locally sourced water used in these towers is very high in silica, which becomes more concentrated as water evaporates from the system. Because of the high silica concentrations, operators must replace the system water more frequently than they would otherwise, which means the cooling towers consume more water.

The Pollution Prevention Program funded researchers to examine two silica treatment methods to address this issue. The first method is the use of polyethylene glycol to inhibit silica polymerization and therefore enable less frequent replacement of system water in cooling towers. The second method focused on the removal of soluble silica using an absorption reaction with modified alumina substrates. Both methods showed promise during this first year of investigation.

Cooling Tower Water Sampling and Analysis

To improve the information used to calculate the amount of water replacement needed in cooling towers, we collected and analyzed 86 samples from 16 cooling tower locations for trace mineral concentrations, including silica. This work will continue into 2020 to build a robust data set.

Site Sustainability

The Laboratory’s sustainability efforts align with Executive Order 13834, *Efficient Federal Operations*, which requires federal agencies to prioritize actions that enable more effective accomplishment of their missions, cut costs, reduce waste, and enhance the resilience of federal infrastructure and operations. We are taking strategic actions to replace aging infrastructure, increase the energy efficiency of current operations, and meet a growing demand for electrical power. Our current initiatives include (1) replacing the current LANL Steam Plant with a new, more efficient combined heat and power plant, (2) planning a 10-megawatt photovoltaic development, and (3) implementing a Smart Labs Program to increase energy efficiency in existing facilities while ensuring safe and efficient work spaces. (For more
The fiscal year 2020 Site Sustainability Plan focuses on three primary strategies: (1) make targeted investments for efficiency, (2) transparently track our progress through metrics to achieve a more efficient and resilient Laboratory, and (3) engage employees and programs at all levels in the Laboratory. The intent of the Site Sustainability Program is to incorporate energy and water conservation and cleaner production measures into everyday business practices.

Successes and Challenges

Site Sustainability successes from 2019 include the following:

- Recommissioning heating, ventilation, and air conditioning systems in 40 facilities (1.5 million square feet)
- Upgrading or replacing building automation systems in 15 facilities
- Implementing facility fault detection and data analytics software (Skyspark) in 60 facilities
- Using Energy Savings Performance Contracts for heating, ventilation, air conditioning, and lighting upgrades (projected $1.2 million in annual savings over a 20-year period)
- Using an energy savings performance contract for the Steam Plant Replacement Project
- Analyzing potential photovoltaic sites and completing an environmental assessment of the sites
- Implementing the energy efficiency components of a Smart Labs Program
- Updating the Engineering Standards Manual to incorporate more sustainable design criteria, including high-performance sustainable buildings and Smart Labs
- Insulating 120 feet of steam and condensate piping, reducing both heat loss and greenhouse gas emissions

Our sustainability investments are designed to reduce growth in energy demand while supporting hiring and mission growth. In 2019, the Laboratory reduced its water-use intensity (gallons used per square foot of building) by 13 percent compared with fiscal year 2007 and achieved a 0.5 percent reduction in energy intensity (British thermal units used per square foot of building) compared with fiscal year 2015.

Table 3-2 provides the Laboratory’s specific site sustainability goals, our progress toward meeting those goals in fiscal year 2019, and planned strategies for making additional progress towards those goals.
Table 3-2. Fiscal Year 2019 Status and Planned Strategies for the Laboratory’s Site Sustainability Goals

<table>
<thead>
<tr>
<th>Goal</th>
<th>Fiscal Year 2019 Status</th>
<th>2-Year Plans</th>
<th>5-Year Plans</th>
<th>10-Year Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greenhouse Gas Production</td>
<td>Achieve a 50% reduction in Scope 1 and 2 greenhouse gas emissions by fiscal year 2025 compared with fiscal year 2008.</td>
<td>LANL achieved a 24.4% reduction in Scope 1 and 2 greenhouse gas emissions compared with fiscal year 2008.</td>
<td>LANL plans to reduce greenhouse gas emissions by completing Phase I of the Steam Plant Replacement Project, which will reduce greenhouse gas emissions by adding a more efficient generator and controls.</td>
<td>Phases 2 and 3 of the Steam Plant Replacement Project will increase efficiency of the entire plant by 20%. LANL will pursue a 10-megawatt photovoltaic installation onsite. The main coal source of power for the Laboratory will shut down, and investments in low-carbon sources are planned.</td>
</tr>
<tr>
<td>Achieve a 25% reduction in Scope 3 greenhouse gas emissions by fiscal year 2025 compared with fiscal year 2008.</td>
<td>LANL increased its Scope 3 greenhouse gas emissions compared with fiscal year 2008 due mostly to an increase in air travel.</td>
<td>LANL will install personal vehicle charging stations. LANL is investigating a federal tax incentive for employees who carpool and use bus transportation.</td>
<td></td>
<td>As LANL invests in local energy sources, transmission and distribution emissions will reduce. LANL will continue to install personal vehicle charging stations as needed.</td>
</tr>
<tr>
<td>Energy Management</td>
<td>For buildings included in this goal, achieve a 25% reduction of energy intensity (British thermal units used per gross square foot) by fiscal year 2025 compared with fiscal year 2015.</td>
<td>LANL achieved a 0.5% energy intensity reduction even though an additional 2,000 employees were hired and new mission work started in nonexcluded facilities.</td>
<td>LANL will continue to invest in energy reduction initiatives, including building automation upgrades; heating, ventilation, and air conditioning recommissioning in facilities; and lighting upgrades in facilities. LANL will implement Smart Labs in eight facilities over the next 10 years.</td>
<td></td>
</tr>
<tr>
<td>Complete Energy Independence Security Act Section 432 continuous (4-year cycle) energy and water evaluations.</td>
<td>LANL met the annual target of completing 25% of the energy and water assessments.</td>
<td>LANL will continue to evaluate covered facilities on a 4-year cycle to identify energy and water conservation measures and prioritize and implement energy and water conservation projects.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Water Management

<table>
<thead>
<tr>
<th>Goal</th>
<th>Fiscal Year 2019 Status</th>
<th>2-Year Plans</th>
<th>5-Year Plans</th>
<th>10-Year Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce potable water intensity (gallons used per gross square foot) by 36% by fiscal year 2025 compared with fiscal year 2007.</td>
<td>LANL achieved a 13% reduction in water intensity compared with fiscal year 2007.</td>
<td>LANL will continue Sanitary Effluent Reclamation Facility operations and implement targeted water conservation actions. LANL will also increase water metering.</td>
<td>LANL will continue Sanitary Effluent Reclamation Facility operations and implement targeted water conservation actions. LANL plans to make improvements in cooling tower operations.</td>
<td>LANL will continue Sanitary Effluent Reclamation Facility operations and implement targeted water conservation actions. LANL will operate a newly built supercomputing facility with minimal water use.</td>
</tr>
</tbody>
</table>

Waste Management

<table>
<thead>
<tr>
<th>Goal</th>
<th>Fiscal Year 2019 Status</th>
<th>2-Year Plans</th>
<th>5-Year Plans</th>
<th>10-Year Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Divert at least 50% of nonhazardous solid waste, excluding construction and demolition debris, each year.</td>
<td>LANL diverted 51.1% of nonhazardous solid waste in fiscal year 2019.</td>
<td>LANL will maintain recycling and source reduction programs to sustain performance levels above 50%.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divert at least 50% of construction and demolition waste each year.</td>
<td>LANL diverted 40% of waste from construction and demolition activities.</td>
<td>LANL will continue waste diversion efforts to sustain performance levels above 50% and close to 100%.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fleet Management

<table>
<thead>
<tr>
<th>Goal</th>
<th>Fiscal Year 2019 Status</th>
<th>2-Year Plans</th>
<th>5-Year Plans</th>
<th>10-Year Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce fleet-wide per-mile greenhouse gas emissions by 30% by fiscal year 2025 compared with fiscal year 2014.</td>
<td>LANL has 365 low-greenhouse-gas vehicles.</td>
<td>LANL will continue to acquire fuel-efficient vehicles and low-greenhouse-gas emitting vehicles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduce annual petroleum consumption by 20% by fiscal year 2015 compared with fiscal year 2005, and maintain the 20% reduction thereafter.</td>
<td>LANL achieved a 33.25% reduction in fleet petroleum usage compared with fiscal year 2005.</td>
<td>LANL will continue to acquire fuel-efficient vehicles and plug-in vehicles.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 3 – ENVIRONMENTAL PROGRAMS

<table>
<thead>
<tr>
<th>Goal</th>
<th>Fiscal Year 2019 Status</th>
<th>2-Year Plans</th>
<th>5-Year Plans</th>
<th>10-Year Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase annual alternative fuel consumption by 10% by fiscal year 2015 compared with fiscal year 2005, and maintain the 10% increase thereafter.</td>
<td>LANL increased fleet alternative fuel use by 279% compared with fiscal year 2005.</td>
<td>LANL will continue to acquire fuel-efficient vehicles and offer E-85 fuel for operations vehicles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have at least 50% of new government passenger vehicles be vehicles that produce zero emissions or are plug-in hybrid electric vehicles by fiscal year 2025.</td>
<td>LANL has five net-zero emission or plug-in hybrid electric vehicles (~2% of the passenger vehicle fleet).</td>
<td>Economically priced, plug-in hybrid vehicles available through the General Services Administration are needed before LANL can cost-effectively expand the plug-in hybrid fleet.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Clean and Renewable Energy

| Acquire a minimum of 25% of the Laboratory’s total electric and thermal energy from renewable or alternative sources by fiscal year 2025, and maintain at least 25% clean energy usage thereafter. | LANL acquired 11.1% of its total electrical and thermal energy from onsite renewable or alternative resources. | LANL is in the planning phase for a 10-megawatt photovoltaic installation either onsite or offsite. | The main coal source of power for the Laboratory will shut down, and investments in low-carbon sources are planned. | LANL will pursue investments in firmed wind technology as needed to support mission growth. |
| Acquire a minimum of 30% of the Laboratory’s total electric energy from renewable or alternative sources by fiscal year 2025, and maintain at least 30% clean electric energy usage thereafter. | LANL obtained 6.8% renewable energy due to the 3-megawatt Abiquiu Low Flow Turbine and the addition of the megawatt-scale photovoltaic plant to its generation profile. | LANL is in the planning phase for a 10-megawatt photovoltaic installation either onsite or offsite. | The main coal source of power for the Laboratory will shut down, and investments in low-carbon sources are planned. | LANL will pursue investments in firmed wind technology as needed to support mission growth. |
CHAPTER 3 – ENVIRONMENTAL PROGRAMS

<table>
<thead>
<tr>
<th>Goal</th>
<th>Fiscal Year 2019 Status</th>
<th>2-Year Plans</th>
<th>5-Year Plans</th>
<th>10-Year Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comply with the revised Guiding Principles for High-Performance Sustainable Buildings for a minimum of 17% of LANL’s existing buildings that are >5,000 gross square feet by 2025, with progress to 100% thereafter.</td>
<td>LANL achieved an average of 90% implementation of the revised Guiding Principles for High-Performance Sustainable Buildings in 34 facilities. A total of 5% of the qualifying buildings comply with the Guiding Principles.</td>
<td>LANL will continue to focus on elements of the Guiding Principles, providing a high return on investments, such as a program to maintain energy savings. High-Performance Sustainable Buildings certification is planned for five facilities every 2 years.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Achieve an energy, waste, or water net-zero value in 1% of existing buildings that are >5,000 gross square feet by fiscal year 2025.</td>
<td>LANL’s current focus is on high return-on-investment elements of the Guiding Principles, such as recommissioning and developing a continuous commissioning program to maintain energy savings.</td>
<td>LANL will focus on high return-on-investment energy-efficiency projects in facilities.</td>
<td>LANL will work to include “net-zero ready” concepts in the Engineering Standards Manual for major modifications.</td>
<td>Existing facilities should incorporate “net-zero ready” design elements for major modifications.</td>
</tr>
<tr>
<td>Achieve a net-zero energy value in all designs for new buildings >5,000 gross square feet beginning in fiscal year 2020.</td>
<td>LANL is evaluating its 10-year site plan for opportunities to engage net-zero design elements.</td>
<td>LANL is benchmarking other DOE facilities with existing net-zero facilities to review site Engineering Standards for net-zero inclusion.</td>
<td>LANL will work to include “net-zero ready” concepts in the Engineering Standards Manual.</td>
<td>New facilities should incorporate “net-zero ready” design elements.</td>
</tr>
<tr>
<td>Increase regional and local planning coordination and involvement.</td>
<td>The Laboratory sponsors and engages in ongoing relationships with all neighbors to promote common goals and interests and to resolve cross-jurisdictional issues.</td>
<td>The Laboratory will continue to participate as a positive partner with many community efforts. In addition, LANL—a large stakeholder—has the ability to bring diverse entities together in a common effort.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal</td>
<td>Fiscal Year 2019 Status</td>
<td>2-Year Plans</td>
<td>5-Year Plans</td>
<td>10-Year Plans</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Acquisition and Procurement</td>
<td>All new construction contracts contain a new “Green, Sustainable Products” clause.</td>
<td>Other major contracts will be updated to include sustainability clauses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Promote sustainable acquisitions and procurements to the maximum extent practicable, ensuring that provisions specifying biobased products are included in 95% of applicable contracts.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measures, Funding, and Training</td>
<td>Phase 1 of the Steam Plant Acquisition Project has been awarded.</td>
<td>Phase 1 of the Steam Plant Acquisition Project will be completed.</td>
<td>Phases 2 and 3 of the Steam Plant Acquisition Project will be completed.</td>
<td>LANL will investigate other energy-saving performance contract options.</td>
</tr>
<tr>
<td>Implement annual targets for energy-savings performance contracts in fiscal year 2017 and annually thereafter as part of Section 14 of Executive Order 13693.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronics Stewardship</td>
<td>A total of 83.8% of eligible electronic acquisitions are environmentally sustainable.</td>
<td>LANL will continue to acquire environmentally sustainable electronic products.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select products registered in the Electronic Product Environmental Assessment Tool for at least 95% of eligible purchases.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable power management on 100% of eligible personal computers, laptops, and monitors.</td>
<td>LANL uses power management for 100% of its eligible computers.</td>
<td>LANL will continue to use power management in 100% of its eligible computers. Laboratory staff will continue to evaluate products that may provide a workaround to the issue of power management interfering with cybersecurity scanning.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable automatic duplexing on 100% of eligible computers and imaging equipment.</td>
<td>Duplex printing is configured in 34.2% of the total owned printers onsite.</td>
<td>As new automatic duplexing features become available for Windows computers, LANL will evaluate implementation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal</td>
<td>Fiscal Year 2019 Status</td>
<td>2-Year Plans</td>
<td>5-Year Plans</td>
<td>10-Year Plans</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Reuse or recycle 100% of used electronics with environmentally sound disposition methods.</td>
<td>Disposal of the Laboratory’s information technology equipment is done in accordance with its internal procedures for security purposes. The Laboratory works with a certified recycler for equipment recycling.</td>
<td>LANL will continue to recycle to the maximum extent possible while still complying with site security requirements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Establish a power usage effectiveness target in the range of 1.2–1.4 for new data centers and less than 1.5 for existing data centers.</td>
<td>LANL achieved power usage effectiveness of 1.28 in its largest data center, the Strategic Computing Complex; 1.4 in the Laboratory Data Communications Center; and 1.5 in the Central Computing Facility, the oldest data center.</td>
<td></td>
<td>LANL will continue to increase server virtualization efforts and retire existing legacy systems.</td>
<td></td>
</tr>
</tbody>
</table>
Site Cleanup and Workplace Stewardship Program

In some locations at the Laboratory, materials and equipment have been abandoned after projects ended or staff retired. We established the Site Cleanup and Workplace Stewardship Program in 2013 to assist with the proper disposition of these items and to prevent similar occurrences in the future. The program staff work with the responsible organizations to develop a work plan for abandoned items, clean indoor and outdoor spaces, and implement sustainable housekeeping practices. The Site Cleanup and Workplace Stewardship Program works closely with the Property Management Group, Environmental Protection and Compliance Division, and Infrastructure Programs Office. One goal of the program is to divert as much material as possible from waste streams.

In 2019, the Site Cleanup and Workplace Stewardship Program

- continued improving the management of sheds and transportable storage buildings at LANL, including
 - confirming the owning organization, location, signage needs, and points of contact for some of the 1,200+ storage structures onsite;
 - adding a point-of-contact sign to each storage structure;
 - working with the owning organizations to clean out and remove unneeded storage; and
 - removing more than 15 storage structures;
- worked with the Pollution Prevention Program to obtain covers for metal and wood recycling bins across the site to reduce the potential for pollution in storm water runoff;
- coordinated more than 25 cleanup projects across the Laboratory, including
 - Technical Area 03 – removing abandoned equipment and asphalt and concrete debris piles, cleaning out storage structures, and removing abandoned-in-place electrical equipment in two parking areas;
 - Technical Area 43 – disconnecting and recycling several large refrigeration units and cleaning out a large laboratory and office space in preparation for closing the building;
 - Technical Area 35 – cleaning out storage structures and a storage room full of legacy equipment;
 - Technical Area 48 – cleaning out and removing storage structures that are in extremely poor condition;
 - Technical Area 53 – recycling two old storage structures and a steel plate;
 - Technical Area 58 Mercury Road – dismantling the abandoned radar trailer, recycling two bins of metal, and preparing the lead and asbestos waste for disposal;
 - Technical Area 60 Sigma Mesa – finishing Phase Five of cleanup, which included cleaning up wood and metal debris; preparing large metal cables for recycling; establishing a controlled laydown yard for craft material and equipment; cleaning up an old laydown yard; and adding chains, signs, and stanchions to prevent future accumulations of abandoned equipment and debris;
- installed signs with structure numbers and point-of-contact information on 50+ storage structures and laydown areas; and
with funding from the DOE Office of Nuclear Materials Integration, coordinated a metal recycling project, including the release of more than 250 potentially activated metal items—weighing approximately 1.5 million pounds total—that were shipped to a metal recycler.

Greenhouse Gas Reduction

In fiscal year 2019, the Laboratory achieved a 24.4 percent reduction in Scope 1 and 2 greenhouse gas emissions compared with fiscal year 2008. Scope 1 emissions are direct emissions from Laboratory-owned or -leased equipment and vehicles. Scope 2 emissions are emissions generated by utility companies while producing electricity, heat, or steam purchased by the Laboratory. The Site Sustainability Program’s initiatives to reduce energy use contributed to reducing greenhouse gas emissions.

The Laboratory’s energy use is expected to steadily increase over the next 10 years as high-performance computing and expanded activities at the Los Alamos Neutron Science Center consume greater amounts of electrical power. We plan to reduce greenhouse gas emissions by completing Phase I of the Steam Plant Replacement project, which will add a more efficient generator and controls. We are also pursuing a 10-megawatt photovoltaic installation either onsite or offsite.

Project Review

All new or modified activities or projects conducted at the Laboratory must be reviewed for environmental and other compliance requirements. The Integrated Review Tool is a web-based application for identifying permits and requirements for projects and for applying for an excavation, fill, and soil disturbance permit. Work owners or planners enter their project information into the application, and subject matter experts review the projects and identify the relevant requirements and any permits needed to perform the work.

The Integrated Project Review Program coordinates environmental subject matter expert reviews and interacts with work owners and planners for the management and operating contractor. The program is represented by subject matter experts from the following compliance programs: Air Quality, Biological Resources, Cultural Resources, Environmental Health Physics, National Environmental Policy Act, Solid Waste Management Units and Areas of Concern, Resource Conservation and Recovery Act, Waste and Materials Management, and Water Quality.

In 2019, subject matter experts reviewed 224 management and operating contractor projects for permits and requirements identification and 693 projects for excavation, fill, and soil-disturbance permitting. In addition, 36 legacy waste cleanup projects were reviewed in the Integrated Review Tool for permits and requirements identification.
Over the last several years, the Integrated Project Review Program has supported integration of project review processes and improvements in the integrated review tool. “Permits and Requirements Identification for the Requestor” training was developed in 2018 and implemented through the Laboratory’s training system in 2019. “Integrated Review Tool – Geographic Information Systems” training was developed and launched in 2019. “Excavation, Fill, and Soil Disturbance Permit Process” training was developed in 2019 and will be launched in 2020.

DEDICATED “CORE” PROGRAMS

Air Quality Program

The Laboratory maintains a rigorous air quality program that addresses emissions of both radioactive and nonradioactive air pollutants. The program consists of three main parts: compliance and permitting, stack monitoring, and ambient air monitoring.

Compliance and Permitting: LANL operates under a number of air emissions permits issued by the New Mexico Environment Department Air Quality Bureau and under approvals issued by the U.S. Environmental Protection Agency for construction of new facilities or operations involving radionuclide emissions. These permits and approvals have federally enforceable emission limits and require specific pollution-control devices, monitoring of emissions from stacks, and detailed recordkeeping and reporting.

LANL is authorized to use materials and operate equipment that produces some air pollutants under the conditions defined in our Title V Operating Permit. Our permitted emission sources include a steam plant, a combustion turbine, boilers and heaters, emergency generators, beryllium operations, chemical use, degreasers, data destruction (paper shredder), evaporative sprayers, and a small asphalt batch plant. Each source type has its own emission limits for both criteria air pollutants and hazardous air pollutants. The Title V Operating Permit also includes facility-wide emission limits for criteria and hazardous air pollutants. As part of compliance with the Title V Operating Permit, we report emissions and provide monitoring records from the permitted sources twice a year to the New Mexico Environment Department, which inspects the Laboratory periodically for compliance.

Stack Monitoring: As described in greater detail in Chapters 2 and 4, the Laboratory rigorously controls and monitors emissions of radionuclides from building stacks as required by the Clean Air Act. We evaluate operations to determine the potential for stack emissions to adversely affect the public or the environment. In 2019, 27 stacks were continuously sampled for the emission of radioactive materials to the air.

Ambient Air Monitoring: The Laboratory operates a network of ambient air quality monitoring stations to detect other possible radioactive air emissions (discussed further in Chapter 4). The network includes
stations located onsite, in adjacent communities, and in regional locations. In 2019, we operated 38 ambient air quality monitoring stations at distances up to 25 miles from the Laboratory.

Water Quality Programs

The Laboratory operates multiple programs that deal with the quality of surface waters and groundwater. We comply with five National Pollutant Discharge Elimination System permits: the outfall permit, the individual permit for storm water discharges, the construction general permit, the multi-sector general permit, and the pesticide general permit (all discussed further in Chapter 2). The Laboratory monitors and remediates groundwater (see Chapter 5) and conducts environmental surveillance monitoring on surface water base flow, storm water flow, and deposited sediments (see Chapter 6). We also have implemented low-impact development projects at Technical Areas 03 and 53 that reduce the amount of storm water runoff from developed areas to improve the quality of the storm water flow.

In 2019, we continued the process to renew the Laboratory’s individual permit for storm water discharges. Our original renewal application was submitted in 2014. We resubmitted the renewal application to the U.S. Environmental Protection Agency on June 15, 2019. The Laboratory’s current individual permit has been administratively continued until a new final permit is issued by the U.S. Environmental Protection Agency.

In 2019, the Laboratory operated under five groundwater discharge permits issued by the New Mexico Environment Department. These permits covered discharges from the sanitary waste water system plant and the sanitary effluent reuse facility; discharges from eight septic tank systems; land application of treated groundwater; injection of treated groundwater into the aquifer through six underground injection control wells; and the Technical Area 50 Radioactive Wastewater Treatment Facility. In June 2019, the New Mexico Water Quality Control Commission vacated the groundwater discharge permit for the Technical Area 50 Radioactive Wastewater Treatment Facility and remanded it back to the New Mexico Environment Department for a public hearing. That hearing took place in November 2019. In the interim, water discharges from the treatment facility have been taking place in accordance with an approved temporary permission from the New Mexico Environment Department.

In 2019, we continued operating the Laboratory’s site-wide network of storm water gage stations to monitor stream flow and collect storm water samples in all major canyons. We also continued operating the early notification system that provides the operators of Santa Fe’s Buckman Direct Diversion (which diverts water from the Rio Grande for Santa Fe’s drinking water supply) early notification of storm water flows through Los Alamos Canyon into the Rio Grande. We documented the effectiveness of installed sediment-control measures for the Los Alamos/Pueblo Canyon watershed and the Sandia Canyon wetlands to the New Mexico Environment Department.

Hydrology Protocol Study

In the New Mexico Standards for Interstate and Intrastate Surface Waters (Title 20, Chapter 6, Part 4 of the New Mexico Administrative Code), Section 128 uniquely classifies some stream reaches on Laboratory property as ephemeral-intermittent reaches (both ephemeral and intermittent). These waters, referred to as “Segment 128 waters,” are the only waters within the State of New Mexico with this combined designation. Understanding the actual flow regime (either ephemeral or intermittent) for
these stream reaches would give the New Mexico Environment Department better information to identify and apply the appropriate surface water quality standard.

The Segment 128 waters at the Laboratory have mostly semi-arid hydrologic characteristics and likely represent ephemeral waters (having water briefly only in direct response to precipitation). However, intermittent surface water conditions (having water for extended periods at certain times of the year) may occur in some locations. These include locations below springs and areas where groundwater that flows in unconsolidated sand or gravel (known as alluvium) under a streambed reaches the surface. Structures installed to slow storm water and promote sediment deposition can alter a stream by promoting increased water storage in the alluvium and increasing the potential for persistent flows. The portions of the stream above and below these water control structures warrant a flow regime evaluation. A hydrology protocol has been developed by the New Mexico Environment Department to distinguish between perennial, intermittent, and ephemeral watercourses in New Mexico.

During the 2015 triennial review of New Mexico’s water quality standards, the New Mexico Environment Department, the DOE, the Laboratory, and Amigos Bravos (a nonprofit organization that works on water-related issues in New Mexico) entered into a formal legal agreement to meet and confer on the appropriate level of water quality protections to be assigned to the Segment 128 waters. Part of the agreement was for all parties to share information and data to identify (a) which Segment 128 waters are ephemeral and which are intermittent; (b) the existing uses of Segment 128 waters; (c) the presence of macroinvertebrates or shellfish in these waters; and (d) any significant change to the chemical, physical, or biological integrity of these waters.

Between 2015 and 2017, key milestones from the legal agreement were achieved, and Hydrology Protocol assessments were completed on three Segment 128 stream reaches. Work was suspended in 2018 due to drought conditions and other LANL priorities. However, in 2019, Laboratory staff conducted more than 100 Hydrology Protocol assessments that covered almost 80 miles of streams. New Mexico Environment Department personnel participated in approximately half of the 2019 assessments.

Sanitary Sewage Sludge Management

On March 24, 2014, the New Mexico Environment Department Solid Waste Bureau approved the Laboratory’s application to operate a facility to compost solid wastes produced by the Laboratory’s Sanitary Waste Water System. The goal of this project is to eliminate the transport of sewage biosolids offsite for landfill disposal. Full-scale operations at the Technical Area 46 Sanitary Waste Water System Compost Facility began in late 2014. On April 18, 2018, the New Mexico Environment Department approved a registration renewal. The compost will be land-applied at the Laboratory for beneficial use, including landscaping, post-construction remediation, and rangeland restoration. Before compost can be land-applied, it must meet pollutant concentration limits, Class A pathogen requirements, and vector attraction reduction requirements as specified in the U.S. Environmental Protection Agency’s Standards for the Use or Disposal of Sewage Sludge in the Code of Federal Regulations Title 40, Part 503.

In 2019, the Sanitary Waste Water System Compost Facility produced 48.2 tons of composted biosolids. Finished compost was stockpiled at the facility. The Sanitary Waste Water System Compost Facility now uses an in-vessel composter that was brought online in 2018. The in-vessel system provides better control of temperature, moisture, and airflow. We plan to land-apply compost at predetermined sites within Laboratory boundaries in the near future. The final locations and rates for compost application are subject to site selection criteria, best management practices, and administrative controls. For
example, compost will not be applied in canyon bottoms, wetlands, or in areas with shallow perched alluvial groundwater. Application rates will not exceed agronomic rates provided by the New Mexico State University Cooperative Extension Service (Robert Flynn, personal communication, 5 February 2013).

Cultural Resources Management

Approximately 90 percent of DOE land in Los Alamos County has been surveyed by the Laboratory’s cultural resources staff for prehistoric and historic cultural resources. These surveys have identified nearly 1,900 sites with a history of occupation dating back to 10,000 years. About 79 percent of the Laboratory’s cultural resources sites are associated with Ancestral Pueblo people: structures, villages, trails, agricultural features, rock art, and more. However, the sites at the Laboratory also include Archaic Period lithic scatters; late 19th and early 20th century homestead, ranching, and logging sites; and Laboratory buildings used during the Manhattan Project and Cold War eras (~1943–1990).

Current cultural resource management initiatives at the Laboratory include (1) completing cultural resources surveys on all DOE property; (2) evaluating and determining the potential eligibility of historic buildings and archeological sites to be listed in the National Register of Historic Places; and (3) conducting outreach activities and tours.

Archaeologists working for the legacy waste cleanup contractor N3B facilitate the cultural resources compliance reviews for legacy waste cleanup projects. The N3B archaeologists, the DOE Environmental Management Los Alamos Field Office cultural resources program manager, the DOE National Nuclear Security Administration Los Alamos Field Office cultural resources program manager, and management and operating contractor archaeologists meet every 2 weeks to discuss legacy waste cleanup activities across the Laboratory on lands managed by the National Nuclear Security Administration Los Alamos Field Office.

In 2019, we recorded archaeological sites and guided projects in avoiding them for a wide variety of ground-disturbing activities. N3B archaeologists conducted site avoidance and monitoring for the R-70 well drilling and well installation in Technical Area 05 and aggregate area sampling in Technical Area 33. Major projects supported by the management and operating contractor cultural resources staff included (1) the Second Fiber Optics Line Project in Technical Areas 70 and 71, and on Santa Fe National Forest, Bureau of Land Management, Santa Fe County, and private lands; (2) the Calibration Site Project in Technical Area 68; (3) legacy site recording in Technical Area 16; and (4) the Area 1 Waterline Installation Project in Technical Areas 15 and 36.

We assessed the condition and updated photographic records of Nake’muu Pueblo in September 2019. We supported Laboratory technical meetings with Santa Clara Pueblo, the Pueblo of Jemez, and Pueblo de San Ildefonso. In addition, in 2019, we supported DOE’s technical meeting with Pueblo de San Ildefonso, Santa Clara Pueblo, Pueblo de Cochiti, and the Pueblo of Jemez. We continued to monitor seasonal recreational use of trails in Technical Areas 70 and 71 and DOE preservation districts in Pueblo Canyon (Technical Area 74). N3B cultural resources staff presented three briefings to legacy waste cleanup employees about the importance of archaeological sites and historic buildings at the Laboratory.

We also completed the final context and documentation reports for two properties in Technical Area 03 to support decontamination and decommissioning of Laboratory buildings. Other historic building work
included evaluating a Manhattan Project–era guard shack in Technical Area 08 for eligibility for inclusion in the National Register of Historic Places and overseeing projects to restore Manhattan Project National Historical Park properties and Park-eligible structures (see the Manhattan Project National Historical Park section below). We conducted archival photography of buildings in Technical Areas 03, 15, 16, and 46, and we continued to work with the Bradbury Science Museum to integrate the Laboratory’s historical artifacts into the museum’s catalog system.

Manhattan Project National Historical Park

The Manhattan Project was a research and development effort during World War II to produce the world’s first nuclear weapons. Legislation establishing the Manhattan Project National Historical Park was passed in 2014. The park has units in Los Alamos, New Mexico; Oak Ridge, Tennessee; and Hanford, Washington. Nine Manhattan Project–era buildings at the Laboratory associated with the design and assembly of the “Gadget” (the atomic bomb tested at Trinity Site), the “Little Boy” weapon (the bomb detonated over Hiroshima, Japan), and the “Fat Man” weapon (the bomb detonated over Nagasaki, Japan) are part of the park properties at the Laboratory. Eight additional Laboratory buildings and structures, identified in the establishing legislation, are considered “park-eligible” properties.

In 2019, Laboratory cultural resources staff worked with National Park Service staff to stabilize, repair, and restore two concrete bunkers (the “Battleship Bunkers”) in Technical Area 18 (Figures 3-2 and 3-3). One of these bunkers is located within the Manhattan Project National Historical Park boundaries, and the other is eligible for the National Register of Historic Places. This project repaired degraded concrete on the buildings’ exteriors to return them to their original Manhattan Project appearance.

![Figure 3-2. Bunker 18-2 during concrete restoration in July 2019](image)

![Figure 3-3. Bunker 18-5 during concrete restoration in July 2019](image)

Also, in 2019, we began planning to (1) stabilize and repair a concrete pad in the V-Site Park unit in Technical Area 16; (2) remove vegetation at the Concrete Bowl, a Park-eligible property in Technical Area 06; and (3) remove a degraded concrete cap that was installed as part of repairs conducted in 2012 at Park Gun Site buildings in Technical Area 08.

We began replacing the wooden wing walls on the only remaining Manhattan Project–era magazine (a Park–eligible structure). We conducted surveillance and maintenance inspections at all 17 Park and
Park-eligible properties and on 18 Cold War–era buildings identified as candidates for long-term preservation.

The DOE hosted three sessions of public tours of the Manhattan Project–era structures at Pajarito Site in Technical Area 18 (Figures 3-4 and 3-5). Dates in April and October coincided with dates that the Trinity site was open to the public, and dates in July coincided with the Los Alamos Science Fest. Visitors had opportunities to learn about the history of the Pajarito Plateau—from 10,000 years in the past through the Homesteading era—and many significant events of the Manhattan Project at Los Alamos.

![Figure 3-4. Public tour at Pajarito Site in Technical Area 18 during July 2019](image)

![Figure 3-5. Visitors inside the Slotin building at Pajarito Site in Technical Area 18 during July 2019](image)

Biological Resources Management

Our goal is to minimize impacts to sensitive species and their habitats and to ensure that all activities comply with federal and state requirements for biological resources protection. The Laboratory contains habitat for three species that are federally listed as either threatened or endangered. Two of these species, the Mexican spotted owl and the Jemez Mountains salamander, have been found on site. Willow flycatchers of unknown subspecies are sometimes detected during migration, but no southwestern willow flycatchers have been documented breeding on Laboratory property.

Accomplishments

We annually inform and educate the Laboratory workforce about biological resources compliance requirements, including restrictions on the timing and location of work activities to protect federally listed species. The biological resources staff also provide information on avoiding impacts to migratory birds from vegetation removal projects and other known hazards to birds—such as open pipes and bollards—and safety briefings on encountering wildlife.

Laboratory biologists annually conduct surveys for the presence of threatened and endangered species that have habitat on LANL property. In 2019, surveys for the Mexican spotted owl confirmed the presence of owls in both Mortandad and Threemile Canyons. Both nests produced young in 2019. Southwestern willow flycatchers were not found during surveys in 2019. Jemez Mountains salamander
surveys were conducted around the Research Park at Technical Area 03 in 2019, and no salamanders were detected.

Throughout 2019, we attended or presented at conferences, workshops, and meetings for professional and educational development, collaboration, and outreach. Notable activities included presenting at the Expanding Your Horizons Workshop for fifth- through eighth-grade girls and attending the Joint Annual Meeting of the Arizona and New Mexico chapters of The Wildlife Society and the American Fisheries Society, the Southwest Chapter of the Society for Ecological Restoration meeting, the Southwest Partners in Amphibian and Reptile Conservation meeting, and the New Mexico Avian Conservation Partners meeting.

LANL biologists were authors on several peer-reviewed publications in 2019. The papers addressed a range extension for the yellow-bellied marmot (*Marmota flaviventris*; Frey et al. 2019), loggerhead shrikes (*Lanius ludovicianus*; Hathcock and Hill 2019), host-parasite relationships in the western bluebird (*Sialia mexicana*) and ash-throated flycatcher (*Myiarchus cinerascens*; Musgrave et al. 2019), long-term phenology of two cavity nesters in relation to a changing climate (Wysner et al. 2019), and wildlife mortalities in open-topped pipes (Harris et al. 2019).

Biological Resources Program Reports

LANL biologists supported many projects across the Laboratory with compliance and monitoring activities in 2019. Published reports supporting projects included the following:

- “Biological Evaluation of the Fiber-Optic Line Installation for Improved Communication at the Los Alamos National Laboratory” (LA-UR-19-25861)
- “Status of Federally Listed Threatened and Endangered Species at Los Alamos National Laboratory” (LA-UR-19-31659)
- “2018 Results for Avian Monitoring at the Technical Area 36 Minie Site, Technical Area 39 Point 6, and Technical Area 16 Burn Ground at Los Alamos National Laboratory” (LA-UR-19-24156)

Wildland Fire Management

The primary objective of the LANL Wildland Fire Program is to provide wildland fire preparedness through fuels mitigation, integration of wildland fire technology, and interagency planning and training. The program staff are located at the Emergency Operations Center and Technical Area 49 Interagency Fire Center along with personnel from the United States Forest Service and National Park Service. The program collaborates with the Los Alamos Fire Department, National Park Service, United States Forest Service, Bureau of Indian Affairs, Northern Pueblo Agencies, and the New Mexico State Forestry Division to enhance wildland fire preparedness.

The key functions of the LANL Wildland Fire Program are listed as follows:

- Conduct or coordinate the site wildland fire hazard analysis
- Develop wildland fire plans, procedures, and checklists
- Conduct LANL wildfire mitigation projects, such as establishing and maintaining fire breaks, defensible space, and fire roads, and conducting tree thinning
• Update the LANL website to ensure that fire conditions and fire danger ratings are available to the workforce
• Maintain the LANL Wildland Fire Program database, and ensure that the program has map-making capabilities for response
• Conduct training, drills, and exercises with internal and external wildland fire organizations

One notable accomplishment of the LANL Wildland Fire Program in 2019 was the publication of the LANL Wildland Fire Mitigation and Forest Health Plan (EMD-PLAN-200). The plan was developed collaboratively with the LANL Wildland Fire Program and LANL Environmental Stewardship Group. The plan provides key components and strategies for wildland fire fuels mitigation and forest health. The LANL Wildland Fire Program also developed a Wildland Fire Annex that was included in the LANL All-Hazards Emergency Management Plan (EMD-PLAN-100). The Annex provides additional details for addressing wildland fires as a unique hazard to LANL, using all phases of emergency management (preparedness, response, mitigation, and recovery) and prevention. Lastly, the LANL Wildland Fire Program developed a position and hired a fire management officer in 2019. The position description includes Type 3 or above incident commander capabilities in accordance with National Wildfire Coordinating Group standards, enhancing the Laboratory’s ability to respond to wildland fires.

The LANL Wildland Fire Program also conducted several wildland fire mitigation activities, including the following:

• **March 2019 High-Wind Event Recovery:** New Mexico experienced a weather pattern in March 2019 designated by weather experts as a “bomb cyclone.” Eighty- to 100-mile-per-hour winds were recorded, and widespread blowdown of trees occurred in some forested areas. Following this event, the LANL Wildland Fire Program evaluated impacted trees on LANL property. Fallen trees were noted for removal, and hazard (leaning or unstable) trees were knocked over. In the vicinity of cultural sites, trees were removed with subject matter expert input to ensure protection of the sites. The remaining blowdown tree removal was subcontracted to the Jemez Pueblo Department of Natural Resources. The subcontracted work included delimming, cutting, and hauling out trees suitable for lumber. The trees went to the Pueblo of Jemez for sawmill operations. Anything that was not suitable for timber was cut for firewood (approximately 150 cords) (Figure 3-6). The firewood was made available to the Northern Pueblos Association. More than 1,250 trees were removed in fiscal year 2019.

• **Wildland Fire Evacuation Route Maintenance:** The wildland fire roadside mitigation project included conducting maintenance on the wildland fire evacuation routes. See Figures 3-7 and 3-8. The project was conducted in accordance with the treatment standards for evacuation routes detailed in EMD-PLAN-200.

![Figure 3-6. Firewood prepared from trees impacted by the 2019 wind event was cut and stacked for removal.](image-url)
CHAPTER 3 – ENVIRONMENTAL PROGRAMS

Waste Management

The Laboratory produces several types of regulated wastes, including low-level radioactive wastes, mixed low-level radioactive and hazardous wastes, transuranic wastes, New Mexico special wastes, and others. Transuranic wastes are wastes that contain man-made elements heavier than uranium on the periodic table (such as plutonium). Wastes from current and recent operations at the Laboratory are managed by the management and operating contractor, while legacy wastes—defined as the wastes generated before 1999—are managed by the legacy waste cleanup contractor.

The LANL Enduring Mission Waste Management Plan outlines the strategies employed by the Laboratory to compliantly and efficiently dispose of the wastes produced since January 1, 1999. The plan also incorporates pollution prevention strategies to significantly reduce the volume and toxicity of waste generated going forward. Waste minimization efforts have greatly reduced or eliminated many sources of radioactive and hazardous waste across the Laboratory. Offsite shipping to government and commercial treatment, storage, and disposal facilities has minimized onsite waste disposal. The Laboratory is operating a new Transuranic Waste Facility that stages transuranic waste for offsite shipment. Construction has begun on low-level radioactive and transuranic liquid waste facilities. We submitted a proposal for a new state-of-the-art Consolidated Waste Facility to DOE as part of the long-term strategy to manage waste at the Laboratory safely and effectively.

Environmental Remediation

In accordance with the 2016 Compliance Order on Consent, the Legacy Waste Cleanup Program directed by DOE’s Office of Environmental Management and operated by N3B investigates and, where necessary, remediates sites to ensure that chemicals and radionuclides in the environment associated with releases from past operations do not result in an unacceptable chemical risk or radiological dose to human health or the environment. (For more information about the 2016 Compliance Order on Consent, please see the section in Chapter 2, The 2016 Compliance Order on Consent.) Sampling is conducted to determine if releases have occurred and, if so, whether the nature and extent are defined or further sampling is warranted. Using the environmental data obtained for a site, human health and ecological risk assessments are conducted. Sites are remediated if the risk assessments indicate potential adverse impacts to human health, the environment, or both. Corrective actions are complete at a site when we have demonstrated and documented to the regulatory authority’s satisfaction that
further sampling is not warranted and that the chemicals and radionuclides present do not pose an unacceptable risk or dose to humans, plants, or wildlife. Table 3-3 presents a summary of the reports submitted and site investigations conducted during 2019 by N3B in support of the 2016 Compliance Order on Consent.
Table 3-3. Summary of Reports Submitted and Site Investigations Conducted during 2019 under the N3B Environmental Remediation Program

<table>
<thead>
<tr>
<th>Document/Activity</th>
<th>Technical Area</th>
<th>Number of Sites</th>
<th>Sampling and Remediation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addendum to the Middle Los Alamos Canyon Aggregate Area Phase II Investigation Report for Solid Waste Management Unit 02-014</td>
<td>02</td>
<td>1</td>
<td>Characterization data for Solid Waste Management Unit 02-014 consist of results from samples collected in 2007, 2010, 2017, and 2018. Removal of PCB-contaminated soil was conducted to address potentially unacceptable risk for industrial workers and recreational users in the depth interval 0.0–1.0 feet below ground surface and to meet the Toxic Substances Control Act bulk PCB remediation waste cleanup level for low-occupancy areas. Soil was excavated during 2018, and removal areas were expanded both laterally and vertically based on confirmation sampling results. A total of 282 cubic yards of PCB-contaminated soil was excavated and packaged for transportation to an offsite disposal facility. Following completion of investigation sampling and remediation activities, characterization data for Solid Waste Management Unit 02-014 were evaluated. Solid Waste Management Unit 02-014 was determined to not pose an unacceptable human health risk or dose under the industrial, recreational, residential, and construction worker scenarios. Ecological risk was evaluated for all Solid Waste Management Units and Areas of Concern within the Technical Area 02 core area, including Solid Waste Management Unit 02-014, rather than by individual Solid Waste Management Unit or Area of Concern. The Phase II investigation report concluded that no potential ecological risks exist for the Technical Area 02 core area. The Laboratory is recommending to the New Mexico Environment Department that the status of Solid Waste Management Unit 02-014 be certified as complete without controls.</td>
</tr>
</tbody>
</table>

Conclusions/Recommendations: All cleanup objectives were met, and no further corrective actions are required at this site.
Field Completion Letter Report for Aggregate Area Known Cleanup Sites Campaign: Solid Waste Management Units 39-002(a), 46-004(q), 15-008(b), and 15-007(c)

<table>
<thead>
<tr>
<th>Document/Activity</th>
<th>Technical Area</th>
<th>Number of Sites</th>
<th>Sampling and Remediation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Completion Letter Report for Aggregate Area Known Cleanup Sites Campaign: Solid Waste Management Units 39-002(a), 46-004(q), 15-008(b), and 15-007(c)</td>
<td>15</td>
<td>2</td>
<td>Two sites in Technical Area 15 [Solid Waste Management Units 15-008(b) and 15-007(c)] were remediated to address potential unacceptable risk to industrial workers and to ecological receptors. At 15-008(b), copper- and lead-contaminated soil was excavated during 2019. A walkover radiological survey was conducted in and around the planned excavation area to identify areas where radiation values were greater than two times the background. A total of 407 samples at 278 locations were collected. A total of 1,760 cubic yards of copper- and lead-contaminated soil were removed. The excavated material was packaged in waste containers and staged for shipment to an approved, licensed, waste disposal facility for final disposition. At 15-007(c), soil was excavated around existing sampling locations, and additional depth samples were collected at existing sampling locations to define the vertical extent of lead. Additionally, 78 surface grab samples were collected at predetermined 5-foot × 5-foot gridded locations and scanned using a portable X-ray fluorescence analyzer spectrometer to identify any additional areas of elevated lead. Soil that contained lead with concentrations exceeding the industrial limits was removed to 1 foot below ground surface using existing analytical data and field X-ray fluorescence screening data. A total of ~18.9 cubic yards of lead-contaminated soil were removed. The excavated material was packaged in waste containers and staged for shipment to an approved, licensed, waste disposal facility for final disposition. Conclusions/Recommendations: All cleanup objectives were met, and no further corrective actions are required at these sites. Details and results of the sampling and remediation will be presented in a future aggregate area investigation report.</td>
</tr>
</tbody>
</table>
Environmental Health Physics Program

The Environmental Health Physics Program provides technical support to the Laboratory for radiation protection of the public and the environment. We use sampling results and radiological assessment models to calculate dose estimates for the public and for plants and animals. These estimates are communicated to regulatory agencies and the public.

DOE Order 458.1, *Radiation Protection of the Public and the Environment*, also requires us to oversee releases to the public of real estate and portable property (such as surplus equipment and wastes) that have the potential to contain residual radioactivity. Examples include land tracts that are transferred to other owners and debris from building demolition activities.

Our environmental health physicists support emergency planning and response by providing technical support and dispersion modeling in the case of an accident and recommendations for protective actions. We also support environmental remediation projects.

Soil, Foodstuffs, and Biota Monitoring

The Soil, Foodstuffs, and Biota Monitoring Program monitors levels of radionuclides, inorganic elements (mostly metals), and organic chemicals (for example, PCBs) in local soil, plants, and animals. The program routinely samples surface soil, native vegetation, foodstuffs (including fruits, vegetables, grains, milk, eggs, fish, meat, and honey); small mammals, such as mice; and other animals that have died due to natural causes or accidents, such as roadkill. These samples are collected from Laboratory property, the surrounding communities, and regional background locations. The data are used to (1) determine whether Laboratory operations are affecting levels of chemicals or radionuclides in the environment, (2) monitor for new releases, (3) calculate estimates of radiation dose for the public and for biota, and (4) conduct risk assessments. We compare levels of chemicals in our samples with background levels, screening levels, and effects levels, and we examine wildlife population and community characteristics. The program is described in detail in Chapter 7.

Accomplishments

In 2019, we sampled foodstuffs from various locations around the Laboratory, in the surrounding communities, and from regional background locations. Foodstuffs samples were analyzed for radionuclides and inorganic elements (mostly metals). Foodstuffs produced by animals, such as milk and eggs, were also tested for PCBs.

Annual sampling was repeated at several locations. Soil and tree samples were collected around the perimeter of Area G and near the boundary between Technical Area 54 and the Pueblo de San Ildefonso and analyzed for radionuclides. Soil, sediment, bees, honey, nonviable bird eggs, and bird nestlings that died of natural causes were collected around the Dual-Axis Radiographic Hydrodynamic Test Facility and analyzed for radionuclides, inorganic elements (mostly metals), and/or organic chemicals. Small mammals and vegetation were collected upstream of the sediment retention structures located in Los Alamos and Pajarito Canyons and analyzed for radionuclides, inorganic elements, and/or organic chemicals.

What is health physics?

Health physics is the branch of radiation science that deals with the effects of ionizing radiation on human health.
Nonviable bird eggs and nestlings that died of natural causes were also collected near Laboratory firing sites and from Bandelier National Monument and were analyzed for metals and/or organic chemicals. We collected and analyzed tissues from mule deer (*Odocoileus hemionus*), elk (*Cervus canadensis*), American badger (*Taxidea taxus*), gopher snake (*Pituophis catenifer*), common raven (*Corvus corax*), American kestrel (*Falco sparverius*), and great horned owl (*Bubo virginianus*), primarily from roadkilled individuals. Results from the program’s 2019 foodstuffs monitoring are discussed in Chapter 8, Public Dose and Risk Assessment, and all other monitoring efforts are reported in Chapter 7, Ecosystem Health.

Meteorology Program

DOE Order 458.1, *Radiation Protection of the Public and the Environment*, and DOE Order 151.1D, *Comprehensive Emergency Management System*, require DOE sites to measure weather variables. The variables to be measured are determined by the radiological activities taking place at the site, the topography of the site, and the distances to critical receptors. The LANL Meteorology Program maintains a network of five meteorological towers that measure temperature, wind, humidity, pressure, precipitation, and solar radiation across the site. These data are used for emergency planning in the event of a chemical or radiological release; regulatory compliance in the areas of air quality, water quality, and waste management; and for supporting monitoring programs for surface water and environmental radiation. Weather data can be accessed internally at the Laboratory (https://weather.lanl.gov) or externally to the Laboratory network (https://weathermachine.lanl.gov). No new weather stations were added in 2019. Meteorological conditions at LANL for 2019 are reported in Chapter 4, Air Quality.

Natural Phenomena Hazard Assessment

DOE Order 420.1C, *Facility Safety*, requires that nuclear facility structures, systems, and components must effectively perform their intended safety functions in the face of natural phenomena hazards (for example, earthquakes, floods, and high winds). As a part of this requirement, natural phenomena hazards are reviewed every 10 years to determine if major modifications to nuclear facilities are required by significant increases in risk from natural phenomena. No meteorological assessments were conducted in 2019. The LANL Seismic Engineering Team provides seismic hazard analyses of key Laboratory facilities and is focused on improving seismic monitoring, site characterization, and our understanding of the Pajarito Fault system, path effects, and site effects. The Seismic Hazards Geology program conducts field mapping of the Pajarito Fault system in the vicinity of Los Alamos and performs site-specific hazard studies at current and planned facility sites.

Land Conveyance and Transfer

In 1997, Section 632 of Public Law 105-119 directed DOE to transfer excess land at the Laboratory to Los Alamos County and to the Secretary of the Interior in trust for the Pueblo de San Ildefonso. The 10 original land tracts located at LANL, identified for conveyance or transfer in an Environmental Impact Statement (DOE/EIS 0293), were subdivided into 32 tracts. To date, 26 of these tracts have been conveyed or transferred in the following way: 20 tracts have been conveyed to Los Alamos County, three tracts have been conveyed to the Los Alamos County School District, and three tracts have been transferred to the Bureau of Indian Affairs, to be held in trust for the Pueblo de San Ildefonso. Tract A-16-b near DP Canyon was conveyed to Los Alamos County in 2019.
Tracts remaining that could be conveyed to Los Alamos County include Tract A-14 in Rendija Canyon, Tracts C-2 and C-4 along New Mexico Route 4, Tract A-18-2 in Bayo Canyon, and additional tracts at Technical Area 21. The Land Conveyance and Transfer Project staff continues to work with the DOE National Nuclear Security Administration Los Alamos Field Office to complete the outstanding compliance activities and requirements needed to convey the remaining tracts.

Conveyances to Los Alamos County support local community economic development by providing lands for housing, commercial uses, and recreation. Nearly 460 housing units, including low-income apartments and about 160 market-rate single-family homes, are being developed on tracts previously conveyed to Los Alamos County.

AWARDS AND RECOGNITION

During 2019, LANL was invited to present its Smart Labs Program progress at the DOE Energy Exchange and Better Buildings Summit and at the International Institute for Sustainable Laboratories conference. The Laboratory received an award for its progress as part of the Better Buildings Smart Labs Accelerator Program. See Figure 3-9.

Figure 3-9. Staff from LANL’s Sustainability Program accept an award for implementation of LANL’s Smart Labs Program.

DESCRIPTION OF THE QUALITY SYSTEM FOR MANAGEMENT OF ANALYTICAL ENVIRONMENTAL DATA

Data management consists of collecting and maintaining sampling data using procedures that ensure that the data comply with established requirements and that data are suitable for their intended use (for example, compliance monitoring or site characterization). Below, we describe the elements of the quality system for sample and data processing and quality assurance for both the management and operating contractor (Triad) and the legacy waste cleanup contractor (N3B) at the Laboratory.
N3B and Triad have very similar data collection and management programs. Each contractor maintains its own sample management office, but they use the same environmental data management platform (see Environmental Data Management Platform section below). Sample planning and collection is performed by individual programs in coordination with their sample management office. Sample handling, analysis, and data review and evaluation are conducted or overseen by the sample management office. Individual programs are responsible for reporting on data results; the sample management office may assist by providing data sets, but final reports are the responsibility of the program.

N3B and Triad received and reviewed more than 280,000 (N3B) and 110,000 (Triad) analytical results in 2019. Not all of these results were used in this report. Some results may be related to programs that are not included in the Annual Site Environmental Report.

Environmental Data Management Platform

The Environmental Information Management database is the core platform used by both N3B and Triad for managing analytical data. This cloud-based data management platform is used for planning sampling events, tracking the packaging and transportation of samples, and storing the results. This data system is jointly used by N3B, Triad, and the DOE Oversight Bureau of the New Mexico Environment Department for all LANL environmental analytical data. It interfaces with Intellus, a fully searchable database available to the public through the Intellus website (http://www.intellusnm.com).

The database structure is written and maintained by Locus Technologies and consists of a cloud-based SQL Server database platform coupled with a web-based user interface. It is designed to manage the sample collection and analysis from planning through data review and reporting. It includes modules for planning sample collection, tracking samples, uploading field data, uploading electronic data deliverables, and conducting automated data review, as well as tools for notifications and reporting.

Figure 3-10 illustrates Sample Management Office processes and the role of the Environmental Information Management data system in these processes.

A Software Change Control Board, consisting of N3B, Triad, and New Mexico Environment Department representatives, has oversight responsibility for modifications made to database functionality and user interfaces. This process ensures that changes requested by one organization will not adversely affect the others. To ensure consistency in the database, standardized naming conventions are used for sampling locations to create a single list of shared location names.

Data Quality Objective Process

N3B and Triad ensure that the data reported from the analytical laboratories are of sufficient quality to fulfill their intended purpose and that the data quality is documented so the data can be evaluated for current and future use. The data collected should support defensible decision-making as described in the *Guidance on Systematic Planning Using the Data Quality Objectives Process* (EPA QA/G-4) (U.S. Environmental Protection Agency 2006).

N3B data quality objectives detail minimum quality assurance and quality control on a project-specific basis. Examples of projects include all of the sampling events and samples collected to fulfill a set of permit requirements; all sampling events and samples collected to determine waste disposition; or all
SMO = Sample Management Office
EIM = Environmental Information Management database
SCL = Sample Collection Log; serves as a field chain of custody
EDD = Electronic Data Deliverable text file; used to load analytical data into Environmental Information Management database

Figure 3-10. Functional diagram of the Sample Management Office work. Green ovals represent the three main Sample Management Office functions. Figures with blue background show data collection steps that directly involve the Sample Management Office.
samples and sampling events collected to fulfill a memorandum of understanding or regulated agreement.

The project manager determines the project’s specific data quality objectives within the boundaries of contracted services and standard operating procedures. If the project’s needs exceed contracted services or standard operating procedures, the Sample Data Management Director may initiate revisions to contracts and standard operating procedures.

Sample Collection and Handling

Sample and data management begins with planning the sampling to ensure that the data will meet the data quality objectives for the project. Sample collection and handling follows established methods. Whenever possible, standard U.S. Environmental Protection Agency methods are used. When federal- or state-approved standard methods are unavailable, LANL-specific procedures are used.

A sampling plan is created in the Environmental Information Management data system. As part of the sampling plan, the system generates sample collection logs and chain-of-custody forms. The sample collection log lists the sampling containers and preservatives needed for each analysis requested. Personnel who conduct the sampling record information on the sample collection log, including location of sampling (if different from planned), sampling date and time (necessary to establish holding time), field parameters if required by the project, and any other comments that may be applicable. Collected samples are placed in coolers, cooled with ice (if required for the analytical method), and delivered to the Sample Management Office. From the time of sampling until delivery to the Sample Management Office, samples are under direct custody of the samplers. At the Sample Management Office, custody is transferred to Sample Management Office staff. Custody transfer is confirmed by signatures. Additionally, before samples are accepted by the Sample Management Office, tamper-indicating devices—also known as custody seals—are placed on every sample container.

Before shipping, Sample Management Office staff store samples as required by the analytical method, including in temperature-controlled refrigerators if needed. Glass sample containers are wrapped in bubble bags to prevent breakage. Samples are packed in coolers with blue ice and/or bagged ice to ensure proper shipping temperature. The signed chain of custody documents are placed inside the coolers. Coolers are taped shut and protected with tamper-indicating devices. Samples are shipped overnight to the designated analytical laboratory. If both the cooler and sample tamper-indicating devices have been damaged or tampered with, the sample is considered unusable. Upon arrival at the designated lab, the integrity of tamper-indicating devices is verified, shipping temperature on arrival is measured, and samples are compared with their respective chain of custody. After the analytical laboratory logs samples into their information management system, the samples are analyzed.

Selection of Analytical Laboratories

Analytical laboratories have been selected through the Request for Proposal process. N3B and Triad have selected laboratories that meet the DOE Consolidated Audit Program – Accreditation Program requirements (see section on DOE Consolidated Audit Program – Accreditation Program for commercial analytical laboratories below). For Triad, National Environmental Laboratory Accreditation Program accredited laboratories are chosen when a given analysis is not available from a contracted DOE Consolidated Audit Program–accredited laboratory. Along with the DOE Consolidated Audit Program accreditation, N3B selects laboratories that meet requirements in their Scope of Work Exhibit “D,” Scope
of Work and Technical Specifications for Off-Site Analytical Laboratory Services. The Scope of Work Exhibit “D” was developed using the Department of Defense/Department of Energy Consolidated Quality Systems Manual for Environmental Laboratories. N3B has contracted with ten analytical laboratories, eight of which performed certifiable analyses for N3B in 2019. When selecting a laboratory to perform a specific analysis, in addition to meeting the minimum requirements of the DOE Consolidated Audit Program and the scope of work, consideration was given to maintaining projects’ continuity of data, adding laboratory capabilities to prevent disruptions caused by unforeseen lab closures, instrument failures, or cost. This approach allows for split sampling and data quality comparison.

Sample Analysis

Sample preparation and analyses are performed in the laboratories using industry-standard methods such as those from the U.S. Environmental Protection Agency SW-846, Clean Water Act, American Industrial Hygiene Association, Occupational Safety and Health Administration, National Institute of Safety and Health, American Society for Testing and Materials, and American Public Health Association. In the absence of an industry standard method, analyses are performed using performance-based methods that meet the project-specific data quality objectives.

The choice of specific method is determined by program or permit requirements or the desired detection limit. All laboratory quality control samples are reported back to Triad or N3B. Additionally, field quality control samples (blank samples and duplicate samples) are sent periodically for analysis. The frequency of field quality control samples is determined by analytical methods, permits, or LANL procedures.

Data Review and Evaluation

Analytical results are generally returned to LANL in two forms: as an electronic data deliverable and as a data package. An electronic data deliverable is a data file transmitted in a format that can be directly uploaded in database programs. Data packages consist of the combined analytical chain of custody, signed sample collection logs, validation report (if available), and the analytical data report and are usually delivered as a portable document format (pdf) file. Some data users additionally request a hard copy of the data package. For N3B, laboratory data packages and electronic data deliverables adhere to the requirements specified in Exhibit “D,” Scope of Work and Technical Specifications for Off-Site Analytical Laboratory Services.

Electronic data deliverables are loaded into holding tables in the Environmental Information Management database. Automated programs in the database verify the data in these files by checking for the following:

- Correct format of the electronic data deliverable file, including the number and types of fields (text/numeric/date-time)
- Analyses reported that agree with those ordered
- Data that were already reported (avoiding duplicates)
- The sampling date used by the lab agrees with database sampling date (important for holding time evaluation by the lab)
- Dates listed by the lab are consistent (for example, sampling before preparation date, preparation before analysis date)
Upon verification, a Sample Management Office chemist runs an auto-validation routine in the Environmental Information Management database to validate reported data. Auto-validation follows the U.S. Environmental Protection Agency’s National Functional Guidance documents and the Department of Defense/Department of Energy Consolidated Quality Systems Manual for Environmental Laboratories for validation of the analytical data. The important exclusions from auto-validation are examination of the spectra (mass spectra, ultraviolet spectra, rad alpha spectra), chromatograms (for methods using confirmation column), and filed blank/duplicate samples. The auto-validation checks and applies proper validation qualifiers and validation reason codes for the following:

- Holding time
- Method blank contamination
- Laboratory control samples and duplicates within limits
- Matrix spike recoveries within limits
- Missing laboratory quality control samples

When verification and auto-validation are completed, data are transferred to production tables in the database.

Data may undergo a manual validation. There are two mechanisms for manual validation: random manual validation of a small percentage of the data or focus validation. For N3B, a minimum of 10 percent of analytical data is manually validated by a chemist. Focus validation is performed on specific data at the request of the data owner or the person preparing reports.

During manual validation, selected samples undergo full validation. Data stored in the Environmental Information Management tables and the data packages are reviewed. All aspects of data quality are evaluated, including spectral data. If manual validation results in a change of the data qualification, the changes are entered into the Environmental Information Management database. A description of the changes and a short explanation of reasons for the changes are included. All such changes are tracked in the Environmental Information Management database’s audit tables.

Field quality control samples are evaluated when data sets are prepared for individual programs or data owners. Any detections found in blank samples or large discrepancies in results between duplicated samples are reported back to a Sample Management Office chemist. If the chemist decides that field quality control samples warrant changes in the validation qualifiers or detection status, the changes are entered into the Environmental Information Management database.

The primary purpose of data validation is to assess and summarize the quality and defensibility of analytical data for the end users. The combined guidelines and requirements ensure the necessary level of confidence in data quality and usability for project activities. The entire data validation process includes a description of the reasons for any failure to meet method, procedural, or contractual requirements and an evaluation of the impact of such failure on the associated data or data set.

Environmental Information Management Platform Performance Testing

N3B chemists performed extensive testing of the Automated Data Review Data Validation Module of the Environmental Information Management database, including using electronic data deliverables from actual laboratory analyses. They identified numerous issues and opportunities for enhancements. N3B personnel worked with Locus Technology to implement corrections and improvements to ensure that the outputs meet the requirements in the DOE Quality Systems Manual and the recommendations in
the U.S. Environmental Protection Agency’s National Functional Guidelines. This work was performed in coordination with Triad and the New Mexico Environment Department.

The validation changes increase transparency and ensure a unified treatment of all data being displayed to the public on Intellus. Testing the system’s configuration provided proof of the system’s capabilities to perform routine data checks accurately based on analytical methods and regulatory requirements. In addition, the Automated Data Review module was improved for all analytes, particularly radiochemistry data. During this process, N3B chemists manipulated example information to verify that the actual outcomes matched the expected outcomes. The results of this testing were shared with the data system architects, and improvements were identified. Additionally, during this process, N3B identified that the radiochemical capabilities were underutilized and so enhanced the Automated Data Review functionality with respect to radioanalytical assessment.

Records Retention
Original hard copies of chain-of-custody forms and sample collection logs are temporarily stored at the Sample Management Office. Annually, older forms are transferred to the Federal Records Center. The ambient air-monitoring program requires a hard-copy Level IV data package to remain onsite. These records are packaged by fiscal year and transferred to the LANL Records Center, where they remain onsite for 5 years. At the end of 5 years, these records are also transferred to the Federal Records Center.

Analytical records are stored in the Environmental Information Management database. The entire N3B and Triad Environmental Information Management database is backed up at least quarterly on N3B or Triad servers. The analytical results are copied daily to the publicly available Intellus database (www.intellusnm.com). Level IV data packages are also uploaded into the LANL Electronic Records Management System to fulfill the long-term record retention requirement. Approximately once a month, the Level IV data packages are copied to Intellus.

Some data and analytical packages are withheld from public view for up to 90 days from the date of receipt. These packages are usually results from samples collected offsite that LANL shares first with other entities like counties or Native American tribes.

Quality Assurance
N3B’s Sample Data Manager and the Sample Management Office are subject to the N3B Quality Assurance and Transformation Audit and Surveillance program and the following:

- Supporting the DOE Consolidated Audit Program audits of analytical laboratories used for environmental sampling (LLCC C.3.7.6 Analytical Laboratories) per the Los Alamos Legacy Cleanup Contract
- Participating in internal audits under the management assessments program
- Supporting Quality Assurance and Transformation in developing project assessment criteria and issues responses in the N3B integrated Contractor Assurance System
- Performing Management Observation and Verifications
- Designating personnel by the Sample Data Management Director to track performance of activities conducted under the scope of this sample and data management plan
DOE’s Analytical Services Program

The DOE’s Analytical Services Program provides environmental management-related services and products to DOE Program Offices and field sites. The various parts of the Analytical Services Program in which the Laboratory participates are described here.

DOE Consolidated Audit Program – Accreditation Program for commercial analytical laboratories

The DOE Consolidated Audit Program provides for assessments of commercial analytical laboratories that analyze environmental samples. Beginning in fiscal year 2018, use of third-party auditors replaced the traditional DOE Consolidated Audit Program audits, allowing for more in-depth approaches to quality control and oversight of these laboratory facilities in meeting the needs of the DOE. The DOE Consolidated Audit Program has qualified the following three accrediting bodies to perform these audits:

- Perry Johnson Laboratory Accreditation, Inc.
- The American Association for Laboratory Accreditation
- The American National Standards Institute National Accreditation Board

Laboratories are audited against the International Organization of Standardization’s Standard 17025, General Requirements for the Competence of Testing and Calibration Laboratories; the National Environmental Laboratory Accreditation Conference Standard; and the Department of Defense/Department of Energy Consolidated Quality Systems Manual for Environmental Laboratories. N3B uses the results from these third-party accreditation assessment reports as part of its oversight for its subcontracted commercial analytical laboratories. Table 3-4 provides a summary of the DOE Consolidated Audit Program laboratories that are currently subcontracted to perform samples analysis for N3B.

Table 3-4. DOE Consolidated Audit Program – Accreditation Program Audits of Laboratories Contracted by N3B and/or Triad in Fiscal Year 2019

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Audit Dates</th>
<th>Accrediting Body</th>
<th>Used in FY19</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEL Laboratories LLC, Charleston, SC</td>
<td>May 20–24, 2019</td>
<td>A2LA(^1)</td>
<td>Yes</td>
</tr>
<tr>
<td>ARS Aleut Analytical, LLC, Anchorage, AK</td>
<td>August 13–15, 2019</td>
<td>ANAB(^2)</td>
<td>Yes</td>
</tr>
<tr>
<td>Brooks Applied Labs, Bothell, WA</td>
<td>September 16–18, 2019</td>
<td>ANAB</td>
<td>Yes</td>
</tr>
<tr>
<td>Southwest Research Institute, San Antonio, TX</td>
<td>February 12–15, 2019</td>
<td>A2LA</td>
<td>Yes</td>
</tr>
<tr>
<td>ALS Environmental, Salt Lake City, UT</td>
<td>September 9–10, 2019</td>
<td>PJLA(^3)</td>
<td>Yes</td>
</tr>
<tr>
<td>ALS Environmental, Fort Collins, CO</td>
<td>Alternate year desktop surveillance, August 2019</td>
<td>PJLA</td>
<td>No</td>
</tr>
<tr>
<td>Desert Research Institute, Reno, NV</td>
<td>Non-DOECAP laboratory(^4)</td>
<td>n/a</td>
<td>Yes</td>
</tr>
<tr>
<td>EMSL Analytical, Inc.</td>
<td>March 3–8, 2019</td>
<td>A2LA</td>
<td>No</td>
</tr>
<tr>
<td>TestAmerica Laboratories, Inc., Arvada, CO</td>
<td>October 11–12, 2018</td>
<td>A2LA</td>
<td>No</td>
</tr>
<tr>
<td>Materials and Chemistry Laboratory, Inc., Oak Ridge, TN</td>
<td>May 20–21, 2019</td>
<td>PJLA</td>
<td>No</td>
</tr>
</tbody>
</table>

\(^1\)The American Association for Laboratory Accreditation
\(^2\)The American National Standards Institute National Accreditation Board
\(^3\)Perry Johnson Laboratory Accreditation, Inc.
\(^4\)Analyses performed at this laboratory do not fall under the DOECAP scope.
N3B provided support to the DOE Consolidated Audit Program in various ways throughout fiscal year 2019. The team participated in the Analytical Services Program annual training workshop, which consisted of presentations related to the Analytical Services Program activities, future direction of the program, and technical presentations with regard to data quality and data management. N3B supported two DOE Consolidated Audit Program audits by providing audit observers to the GEL Laboratories audit and the Brooks Applied Laboratory audit. Finally, N3B staff played an active role in the DOE Consolidated Audit Program Data Quality Work Group, participating in conference calls and answering questions or requests regarding issues that came up during laboratory audits and general laboratory or data-quality questions from around the complex.

Findings from the third-party audits are reported back to the interested DOE sites through the DOE Consolidated Audit Program administrator. N3B tracks all findings from the laboratories it has under contract. Several findings from fiscal year 2019 are considered to be major findings for the purpose of this report. Some of these findings were recurring between multiple laboratories. The significant findings are outlined here:

- Finding: Laboratories do not document all procedural deviations from standard test methods.
- Finding: The laboratories do not maintain all of the records necessary for re-creation of the data package. Recurring examples included identification of the pH meters, balances, and pipettes used for various processes.
- Finding: Examples were cited where laboratories were not analyzing the quality control samples in the exact same manner as the client samples.
- Finding: Examples were cited where proficiency-testing samples were not being analyzed in the same manner as regular client samples.

Before receiving certificates of accreditation, laboratories are required to submit corrective action reports to the accrediting bodies. The accrediting bodies must accept these corrective actions as sufficient before granting accreditation. All N3B subcontract laboratories received their accreditations in fiscal year 2019, indicating that the corrective actions were determined to be sufficient in fixing the identified issues.

DOE Mixed Analyte Performance Evaluation Program

The Mixed Analyte Performance Evaluation Program provides proficiency testing in various environmental matrices primarily for radionuclide identification and quantification. Results for proficiency testing help to assure field managers of the quality and reliability of environmental data for decisionmaking. Laboratories are required through the National Laboratory Accreditation Conference Standard and the DOE Quality Systems Manual to participate in proficiency testing in all fields of accreditation, where available.

Although not a mandatory requirement of the Quality Systems Manual, the Mixed Analyte Performance Evaluation Program can be a very useful tool in determining a commercial laboratory’s analytical radiological capabilities across most environmental matrices. Participation in the Mixed Analyte Performance Evaluation Program is required for laboratories that perform radiochemical analyses for N3B. In fiscal year 2019, two laboratories fell under this requirement. These laboratories both participated in the two available rounds (Series 40 and Series 41) of the Mixed Analyte Performance Evaluation Program.
In general, Mixed Analyte Performance Evaluation Program results at N3B subcontract laboratories were acceptable, with minor exceptions in the most recent round, Series 41. The labs reported radium-226 results from the water matrix with an unacceptable high bias. In the previous series, radium-226 was spiked at a similar level, and the labs reported an acceptable result. This provides confidence that the failure was an anomaly.

Failures related to the analysis of uranium-234 and uranium-238 in Mixed Analyte Performance Evaluation Program Series 41 with a strong negative bias were noted and considered. Soil matrix samples are known to contain insoluble uranium, which cannot be accurately measured without employing a rigorous sample destruction that many labs do not routinely perform and might not deem necessary, depending on the intent of the analysis. The labs performed well on the Mixed Analyte Performance Evaluation Program Series 40 soils.

DOE Consolidated Audit Program – Treatment, Storage, and Disposal Facility Audits

Treatment, storage, and disposal facility audit reports generated by the DOE Consolidated Audit Program are one tool that DOE Field Office managers can use in performing their DOE O 435.1 annual acceptability reviews for these commercial sites. These audits are conducted by volunteers from the DOE and site contractors who use these sites for the disposal of waste. Table 3-5 provides a summary of the treatment, storage, and disposal facilities that were audited by the DOE Consolidated Audit Program in fiscal year 2019 and were subcontracted to accept radioactive waste from N3B for disposal.

Table 3-5. Audits of Treatment, Storage, and Disposal Facilities Used by N3B in Fiscal Year 2019 under the DOE Consolidated Audit Program

<table>
<thead>
<tr>
<th>Treatment, Storage, and Disposal Facility</th>
<th>Audit Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Control Specialists, LLC</td>
<td>May 7–9, 2019</td>
</tr>
<tr>
<td>EnergySolutions, LLC</td>
<td>May 14–16, 2019</td>
</tr>
<tr>
<td>Perma-Fix Northwest</td>
<td>June 4–6, 2019</td>
</tr>
</tbody>
</table>

Findings from all of the treatment, storage, and disposal facilities that N3B uses are reviewed and tracked by the Waste Management Program. Several findings from fiscal year 2019 are considered to be major findings for the purpose of this report. Although there were several issues identified as significant findings, these issues were not of immediate significance to compliance, policy, or performance. The significant findings are outlined as follows:

- **Perma-Fix Northwest (Richland, Washington)**
 - There were no significant findings identified during this audit.

- **Waste Control Specialists (Andrews County, Texas)**
 - Finding: Completed quality records are not being stored in a 1-hour, fire-rated cabinet before being scanned.
 - Finding: Commercial Grade Dedication training was not current in the training database for one employee.
 - Finding: The current Waste Controls Specialist Transportation Plan does not reflect all their current practices in the field.
• EnergySolutions (Clive, UT)
 – Finding: Some security signs outside the mixed waste storage pad were faded to the point that they are not legible from 25 feet, as required by regulations and Resource Conservation and Recovery Act permit.
 – Finding: Two satellite accumulation containers in the outside maintenance building were labeled as hazardous waste but were not marked with the hazards of the contents.
 – Finding: An inspection of the new fuel storage and refueling area found that there are not any “No Smoking” signs posted around or near the fueling area.
 – Finding: Several cylinders were observed in the full flammable cylinder storage area adjacent to the outside maintenance shop that were not secured.
 – Finding: Training records in the Energy Solutions Training Management System were not current for all positions that were randomly selected.

REFERENCES

The purpose of the air quality surveillance program at Los Alamos National Laboratory (LANL, or the Laboratory) is to protect public health and the environment. A primary objective is to measure levels of airborne radiological materials in order to calculate radiological doses to humans, plants, and animals. We also conduct meteorological monitoring of the local climate and weather.

Results from radiological monitoring of the air are compared with U.S. Department of Energy and U.S. Environmental Protection Agency standards. During 2019, the emissions from Laboratory operations were below the applicable regulatory limits. The Laboratory uses the data reported here to help address the question, “Are there adverse effects to humans, plants, or animals from Laboratory-produced radioactive airborne materials or direct radiation?” in Chapters 7 and 8, Ecosystem Health and Public Dose and Risk Assessment. Weather data support many Laboratory activities, including emergency management and response, regulatory compliance, safety analysis, engineering studies, and environmental surveillance programs.

INTRODUCTION

The purpose of the air quality surveillance program at Los Alamos National Laboratory (LANL, or the Laboratory) is to protect public health and the environment. Air quality is monitored by five programs, each described in a section of this chapter: (1) ambient air sampling at public locations, (2) exhaust stack sampling at Laboratory facilities, (3) gamma and neutron direct-penetrating radiation monitoring near radiation sources and in public locations, (4) particulate matter monitoring, and (5) meteorological monitoring of the local climate and weather.

A primary objective is to measure levels of airborne radiological materials in order to calculate radiological doses to humans, plants, and animals. Results are compared with standards from the U.S. Department of Energy and the U.S. Environmental Protection Agency. Radioactivity levels in the air are compared with limits for members of the public provided in DOE Order 458.1 Chg 3, Radiation Protection of the Public and the Environment, and in the National Emission Standards for Hazardous Air Pollutants, Title 40, Part 61 of the Code of Federal Regulations. Estimates of public doses prepared using these data are provided in Chapter 8, Public Dose and Risk Assessment.

AMBIENT AIR SAMPLING FOR RADIONUCLIDES

To monitor releases from Laboratory operations, the Laboratory’s air sampling network measures levels of airborne radionuclides. Radioactivity levels in the air are compared with the U.S. Environmental Protection Agency’s concentration levels for environmental compliance, as provided in National Emission Standards for Hazardous Air Pollutants, Title 40, Part 61 of the Code of Federal Regulations, Appendix E, Table 2.

During 2019, the Laboratory operated approximately 40 environmental air-monitoring stations to monitor radionuclides in the air (Figures 4-1 and 4-2). Station locations are categorized as regional (away from the Laboratory), perimeter, onsite, or waste site. The waste site locations monitor radionuclides
Figure 4-1. Environmental air-monitoring stations at and near the Laboratory
Note: MDA = material disposal area; TA = technical area

Figure 4-2. Environmental air-monitoring stations at the Laboratory’s Technical Area 54, Area G

near the Laboratory’s low-level radioactive waste disposal area and radioactive waste storage area, Area G, at Technical Area 54. These stations operate continuously by pulling ambient air through a filter to capture airborne particulate matter; the filters are changed out every two weeks and sent to an offsite analytical laboratory.

Regional Background Levels

The atmosphere contains background levels of radioactivity consisting of naturally occurring radionuclides and also radioactive materials from nuclear weapons tests and nuclear accidents. Laboratory staff monitor the air to determine if the Laboratory is adding radioactivity to the atmosphere. Background levels are measured at regional monitoring stations located in the communities of El Rancho, Española, and Santa Fe. The results are summarized in Table 4-1.

What are cosmic rays?

Cosmic rays are fragments of atoms that rain down upon the Earth from outside the solar system.
Table 4-1. Average Background Radionuclide Activities in the Regional Atmosphere

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Units</th>
<th>U.S. Environmental Protection Agency Concentration Level for Environmental Compliance</th>
<th>Average Regional Background Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritium</td>
<td>pCi/m³</td>
<td>1500</td>
<td>1 ± 1</td>
</tr>
<tr>
<td>Americium-241</td>
<td>aCi/m³</td>
<td>1900</td>
<td>0 ± 1</td>
</tr>
<tr>
<td>Plutonium-238</td>
<td>aCi/m³</td>
<td>2100</td>
<td>0 ± 1</td>
</tr>
<tr>
<td>Plutonium-239/240</td>
<td>aCi/m³</td>
<td>2000</td>
<td>0 ± 1</td>
</tr>
<tr>
<td>Uranium-234</td>
<td>aCi/m³</td>
<td>7700</td>
<td>10 ± 4</td>
</tr>
<tr>
<td>Uranium-235</td>
<td>aCi/m³</td>
<td>7100</td>
<td>1 ± 1</td>
</tr>
<tr>
<td>Uranium-238</td>
<td>aCi/m³</td>
<td>8300</td>
<td>7 ± 3</td>
</tr>
</tbody>
</table>

Note: pCi/m³ = picocuries per cubic meter; aCi/m³ = attocuries per cubic meter.

Perimeter, Onsite, and Waste Site Radionuclides

Tritium

Tritium is present in the environment primarily as the result of past nuclear weapons tests and cosmic-ray interactions with the air (Eisenbud and Gesell 1997). Measurements of water vapor in the air and tritium in the water vapor are used to calculate the amount of tritium in the air. During 2019, tritium concentrations were similar to recent years and below U.S. Environmental Protection Agency’s concentration level for environmental compliance of 1,500 picocuries per cubic meter (Table 4-2). The highest annual tritium activity at any offsite station was 0.2 percent of the concentration level.

Table 4-2. Airborne Tritium as Tritiated Water Activities for 2019—Group Summaries

<table>
<thead>
<tr>
<th>Station Grouping</th>
<th>Number of Stations</th>
<th>Mean ± 2 Standard Deviations (pCi/m³)</th>
<th>Maximum Annual Station Activity (pCi/m³)</th>
<th>U.S. Environmental Protection Agency Concentration Level for Environmental Compliance (pCi/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional</td>
<td>3</td>
<td>1 ± 1</td>
<td>1</td>
<td>1,500</td>
</tr>
<tr>
<td>Perimeter</td>
<td>27</td>
<td>1 ± 1</td>
<td>3</td>
<td>1,500</td>
</tr>
<tr>
<td>Onsite</td>
<td>2</td>
<td>n/a</td>
<td>9</td>
<td>1,500</td>
</tr>
<tr>
<td>Waste site</td>
<td>1</td>
<td>329</td>
<td>n/a</td>
<td>1,500</td>
</tr>
</tbody>
</table>

Note: pCi/m³ = picocuries per cubic meter, n/a = not applicable.

For the waste site, tritium data are reported for the location at the southern boundary of Area G (station 160, Table 4-2), which is where the tritium concentrations are largest. At the other Area G stations, tritium was monitored only during the last quarter of 2019; therefore, these data were not included in Table 4-2. All of the last-quarter results from these locations were below 329 picocuries per cubic meter. All concentrations are well below the tritium concentration level of 1,500 picocuries per cubic meter.

Americium-241

Table 4-3 summarizes the 2019 sampling data for americium-241. The results are similar to recent years and about 0.1 percent of the americium-241 concentration level for environmental compliance.
Table 4-3. Airborne Americium-241 Activities for 2019—Group Summaries

<table>
<thead>
<tr>
<th>Station Grouping</th>
<th>Number of Stations</th>
<th>Mean ± 2 Standard Deviations (aCi/m3)</th>
<th>Maximum Annual Station Activity (aCi/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional</td>
<td>3</td>
<td>0 ± 1</td>
<td>0</td>
</tr>
<tr>
<td>Perimeter</td>
<td>27</td>
<td>0 ± 1</td>
<td>2</td>
</tr>
<tr>
<td>Onsite</td>
<td>2</td>
<td>0 ± 1</td>
<td>0</td>
</tr>
<tr>
<td>Waste site</td>
<td>8</td>
<td>0 ± 1</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: aCi/m3 = attocuries per cubic meter

Plutonium

Table 4-4 summarizes LANL’s 2019 plutonium-238 and plutonium-239/240 data, which are similar to previous years.

Table 4-4. Airborne Plutonium-238 and Plutonium-239/240 Activities for 2019—Group Summaries

<table>
<thead>
<tr>
<th>Station Grouping</th>
<th>Number of Stations</th>
<th>Group Mean ± 2 Standard Deviations (aCi/m3)</th>
<th>Maximum Annual Station Activity (aCi/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Plutonium-238 Plutonium-239/240</td>
<td>Plutonium-238 Plutonium-239/240</td>
</tr>
<tr>
<td>Regional</td>
<td>3</td>
<td>0 ± 1 0 ± 1</td>
<td>0 1</td>
</tr>
<tr>
<td>Perimeter</td>
<td>27</td>
<td>0 ± 1 3 ± 13</td>
<td>1 25</td>
</tr>
<tr>
<td>Onsite</td>
<td>2</td>
<td>0 ± 1 0 ± 2</td>
<td>0 1</td>
</tr>
<tr>
<td>Waste site</td>
<td>8</td>
<td>0 ± 1 1 ± 1</td>
<td>0 1</td>
</tr>
</tbody>
</table>

Note: aCi/m3 = attocuries per cubic meter

Every year, dust from areas where Manhattan Project-era operations took place results in detectable amounts of plutonium-239 in the air near Technical Areas 01 and 21. Plutonium-239 concentrations at environmental air-monitoring stations 317 (DP Road), 324 (Hillside 138), and 348 (downwind of Technical Area 21) are about 1 percent of the U.S. Environmental Protection Agency’s plutonium-239 concentration level for environmental compliance, which is 2,000 attocuries per cubic meter.

Uranium

Table 4-5 summarizes uranium data. The results are consistent with naturally occurring uranium and are below the applicable concentration levels.

Table 4-5. Airborne Uranium-234, -235, and -238 Activities for 2019—Group Summaries

<table>
<thead>
<tr>
<th>Station Grouping</th>
<th>Number of Stations</th>
<th>Group Mean ± 2 Standard Deviations (aCi/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Uranium-234 Uranium-235 Uranium-238</td>
</tr>
<tr>
<td>Regional</td>
<td>3</td>
<td>10 ± 8 1 ± 1 7 ± 6</td>
</tr>
<tr>
<td>Perimeter</td>
<td>27</td>
<td>7 ± 9 1 ± 1 7 ± 7</td>
</tr>
<tr>
<td>Onsite</td>
<td>2</td>
<td>5 ± 3 0 ± 1 6 ± 6</td>
</tr>
<tr>
<td>Waste site</td>
<td>8</td>
<td>7 ± 6 0 ± 1 7 ± 5</td>
</tr>
</tbody>
</table>

Note: aCi/m3 = attocuries per cubic meter

Gamma Spectroscopy Measurements

Air samples are analyzed by gamma spectroscopy for the following radionuclides that produce gamma rays: cobalt-60, cesium-134 and -137, iodine-131, sodium-22, and protactinium-234m. These radionuclides were not detected.
CHAPTER 4 – AIR QUALITY

Conclusion
All concentrations of airborne radioactive material measured in ambient air samples were below the applicable concentration levels for environmental compliance.

EXHAUST STACK SAMPLING FOR RADIONUCLIDES

Introduction
Radioactive materials are used in some Laboratory operations. Buildings that house those operations may vent radioactive materials into the environment through an exhaust stack or other release point. The Laboratory’s stack monitoring team monitors emission points that could cause a public dose greater than 0.1 millirem in a year. Each of these stacks is sampled in accordance with the National Emission Standards for Hazardous Air Pollutants, Title 40, Part 61 of the Code of Federal Regulations, Subpart H.

Sampling Methodology
Radioactive stack emissions can be one of four types: (1) particulate matter, (2) activated vapors and volatile compounds, (3) tritium, or (4) gaseous mixed activation products. Activated materials are made radioactive by exposure to neutron radiation. The sampling method is described below for each emission type.

Emissions of particulate matter are sampled using a glass-fiber filter. A continuous sample of air from the stack is pulled through a filter that captures small particles. Filters are collected weekly and shipped to an offsite analytical laboratory.

Charcoal cartridges are used to sample emissions of vapors and volatile compounds generated by operations at the Los Alamos Neutron Science Center at Technical Area 53, the Chemistry and Metallurgy Research Building, and Technical Area 48.

Tritium emissions are measured with collection devices known as bubblers to determine the total amount of tritium released and whether it is in the elemental or oxide form. The bubblers pull a continuous sample of air from the stack. The sample is then “bubbled” through three sequential vials containing ethylene glycol. The ethylene glycol collects any tritium oxide that may be part of a water molecule. The air is then passed through a palladium catalyst that converts the elemental tritium to its oxide form. The sample is then pulled through three additional vials containing ethylene glycol, which collect the newly formed tritium oxide.

The stack monitoring team measures gaseous mixed activation products emissions from Los Alamos Neutron Science Center activities using real-time air-monitoring data. A sample of air from the stack is pulled through an ionization chamber that measures the total amount of radioactivity in the sample.

Data Analysis

Methods
This section discusses analysis methods for each type of Laboratory emission. The methods comply with U.S. Environmental Protection Agency requirements in the National Emission Standards for Hazardous Air Pollutants, Title 40, Part 61 of the Code of Federal Regulations, Appendix B, Method 114.
Check of the Total Activity

Each week, the glass-fiber filters are collected, and the total activity is measured before the filters are shipped to an offsite analytical laboratory, where they are analyzed using spectroscopy to identify radionuclides. These data are used to quantify emissions of radionuclides. Results are compared with the total activity measurements to ensure that all radionuclides are identified.

Vaporous Activation Products

Each week, charcoal cartridges are collected and shipped to an offsite analytical laboratory, where they are analyzed using spectroscopy. These data are used to identify and quantify the presence of vaporous material.

Tritium

Each week, tritium bubbler samples are collected and transported to the Laboratory’s Health Physics Analysis Laboratory, where the amount of tritium in each vial is determined by liquid scintillation counting.

Gaseous Mixed Activation Products

The Laboratory continuously monitors gaseous mixed activation products at the Los Alamos Neutron Science Center. There are two reasons for using continuous monitoring. First, standard filter paper and charcoal filters will not collect gaseous emissions. Second, the half-lives of these radionuclides are so short that the activity would decay away before any sample could be analyzed offsite. The monitoring system includes a flow-through ionization chamber in series with a gamma spectroscopy system. The real-time current that this ionization chamber measures is recorded on a strip chart, and the total amount of charge collected in the chamber is integrated daily. The gamma spectroscopy system analyzes the composition of these gaseous mixed activation products.

Analytical Results

Table 4-6 provides detailed emissions data for Laboratory buildings with sampled stacks. Table 4-7 provides a detailed listing of the total stack emissions in the groupings of gaseous mixed activation products and particulate matter plus vapor activation products. Table 4-8 presents the half-lives of the radionuclides typically emitted by the Laboratory.
Table 4-6. Airborne Radioactive Emissions from LANL Buildings with Sampled Stacks in 2019
Values are expressed in scientific notation.

<table>
<thead>
<tr>
<th>Technical Area and Building Number</th>
<th>Tritium (Curies)</th>
<th>Americium-241 (Curies)</th>
<th>Plutonium (Curies)</th>
<th>Uranium (Curies)</th>
<th>Thorium (Curies)</th>
<th>Particulate Matter plus Vapor Activation Products (Curies)</th>
<th>Gaseous Mixed Activation Products (Curies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA-03-029</td>
<td>6.3 × 10⁻⁸</td>
<td>7.5 × 10⁻⁷</td>
<td>3.9 × 10⁻⁶</td>
<td>1.5 × 10⁻⁷</td>
<td>1.7 × 10⁻⁵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-16-205/450</td>
<td>38.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-48-001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4 × 10⁻³</td>
<td></td>
</tr>
<tr>
<td>TA-50-001</td>
<td>2.5 × 10⁻⁸</td>
<td></td>
<td>2.5 × 10⁻⁸</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-50-069</td>
<td></td>
<td></td>
<td>2.4 × 10⁻¹⁰</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-003</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
<td>1.5 × 10⁻⁴</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>TA-53-007</td>
<td>3.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.6 × 10⁻³</td>
<td>251</td>
</tr>
<tr>
<td>TA-54-231/375/412</td>
<td></td>
<td>1.0 × 10⁻⁸</td>
<td>5.7 × 10⁻⁹</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-55-004</td>
<td>0.7</td>
<td>1.2 × 10⁻⁸</td>
<td>3.9 × 10⁻⁸</td>
<td>7.6 × 10⁻⁹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-55-400</td>
<td></td>
<td>2.5 × 10⁻⁹</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>48</td>
<td>6.3 × 10⁻⁸</td>
<td>7.9 × 10⁻⁷</td>
<td>4.0 × 10⁻⁶</td>
<td>1.9 × 10⁻⁷</td>
<td>4.2 × 10⁻³</td>
<td>266</td>
</tr>
<tr>
<td>Building No.</td>
<td>Nuclide</td>
<td>Emission (Curies)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>---------------</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-03-29</td>
<td>Cesium-137</td>
<td>0.000012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-03-29</td>
<td>Gallium-68</td>
<td>0.0000023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-03-29</td>
<td>Germanium-68</td>
<td>0.0000023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-48-001</td>
<td>Arsenic-73</td>
<td>0.0000013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-48-001</td>
<td>Bromine-77</td>
<td>0.000006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-48-001</td>
<td>Gallium-68</td>
<td>0.00013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-48-001</td>
<td>Germanium-68</td>
<td>0.00013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-48-001</td>
<td>Mercury-197</td>
<td>0.00052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-48-001</td>
<td>Mercury-197m</td>
<td>0.00052</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-48-001</td>
<td>Osmium-191</td>
<td>0.0000001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-48-001</td>
<td>Selenium-75</td>
<td>0.000087</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-003</td>
<td>Argon-41</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-003</td>
<td>Beryllium-7</td>
<td>0.000022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-003</td>
<td>Bromine-82</td>
<td>0.00013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-003</td>
<td>Carbon-11</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-003</td>
<td>Selenium-75</td>
<td>0.0000068</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Argon-41</td>
<td>7.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Bromine-76</td>
<td>0.000074</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Bromine-77</td>
<td>0.000031</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Bromine-82</td>
<td>0.0021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Carbon-10</td>
<td>0.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Carbon-11</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Mercury-197</td>
<td>0.00021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Mercury-197m</td>
<td>0.00021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Nitrogen-13</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Nitrogen-16</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Sodium-22</td>
<td>0.00000023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Sodium-24</td>
<td>0.000056</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Oxygen-14</td>
<td>0.68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Oxygen-15</td>
<td>104</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Osmium-191</td>
<td>0.000019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TA-53-007</td>
<td>Selenium-75</td>
<td>0.0000021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The emission value for each building and nuclide is listed in both standard and scientific notation.
Table 4-8. Radionuclide Half-Lives

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Half-Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritium</td>
<td>12.3 years</td>
</tr>
<tr>
<td>Beryllium-7</td>
<td>53.1 days</td>
</tr>
<tr>
<td>Carbon-10</td>
<td>19.3 seconds</td>
</tr>
<tr>
<td>Carbon-11</td>
<td>20.4 minutes</td>
</tr>
<tr>
<td>Nitrogen-13</td>
<td>10.0 minutes</td>
</tr>
<tr>
<td>Nitrogen-16</td>
<td>7.1 seconds</td>
</tr>
<tr>
<td>Oxygen-14</td>
<td>70.6 seconds</td>
</tr>
<tr>
<td>Oxygen-15</td>
<td>122.2 seconds</td>
</tr>
<tr>
<td>Sodium-22</td>
<td>2.6 years</td>
</tr>
<tr>
<td>Sodium-24</td>
<td>15.0 hours</td>
</tr>
<tr>
<td>Argon-41</td>
<td>1.82 hours</td>
</tr>
<tr>
<td>Cobalt-60</td>
<td>5.3 years</td>
</tr>
<tr>
<td>Arsenic-73</td>
<td>80.3 days</td>
</tr>
<tr>
<td>Arsenic-74</td>
<td>17.8 days</td>
</tr>
<tr>
<td>Bromine-76</td>
<td>16.2 hours</td>
</tr>
<tr>
<td>Bromine-77</td>
<td>2.4 days</td>
</tr>
<tr>
<td>Bromine-82</td>
<td>1.5 days</td>
</tr>
<tr>
<td>Selenium-75</td>
<td>119.8 days</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>28.8 years</td>
</tr>
<tr>
<td>Cesium-134</td>
<td>2.1 years</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>30.1 years</td>
</tr>
<tr>
<td>Osmium-191</td>
<td>15.4 days</td>
</tr>
<tr>
<td>Mercury-197</td>
<td>2.7 days</td>
</tr>
<tr>
<td>Mercury-197m</td>
<td>23.8 days</td>
</tr>
<tr>
<td>Uranium-234</td>
<td>245,500 years</td>
</tr>
<tr>
<td>Uranium-235</td>
<td>703,800,000 years</td>
</tr>
<tr>
<td>Uranium-238</td>
<td>4,468,000,000 years</td>
</tr>
<tr>
<td>Plutonium-238</td>
<td>87.7 years</td>
</tr>
<tr>
<td>Plutonium-239</td>
<td>24,110 years</td>
</tr>
<tr>
<td>Plutonium-240</td>
<td>6,563 years</td>
</tr>
<tr>
<td>Plutonium-241</td>
<td>14.4 years</td>
</tr>
<tr>
<td>Americium-241</td>
<td>432 years</td>
</tr>
</tbody>
</table>

Conclusions and Trends

Emission-control systems in Laboratory facilities for particulates such as plutonium and uranium continue to work as designed, and particulate emissions remain very low, in the micro-curie range. Emissions of short-lived gases and vapors are slightly higher than last year, as a result of increases in operations at Technical Area 53. During 2019, the radioactive emissions from all Laboratory sources amount to approximately 1 percent of the regulatory limit.
MONITORING FOR GAMMA AND NEUTRON DIRECT-PENETRATING RADIATION

Introduction
Gamma and neutron radiation levels are monitored by the Direct-Penetrating Radiation Network (McNaughton 2018) and supplemented by the Neighborhood Environmental Watch Network. The objectives are to monitor gamma and neutron radiation in the environment as required by DOE Order 458.1.

Devices known as dosimeters measure exposure to ionizing radiation. In 2019, the Laboratory deployed dosimeters at 80 locations to monitor direct-penetrating radiation in the environment. Thermoluminescent dosimeters, which monitor gamma and neutron radiation, are deployed at every environmental air-monitoring station (Figures 4-1 and 4-2). Additional thermoluminescent dosimeters are deployed at Technical Areas 53 and 54, which are potential Laboratory sources of direct-penetrating radiation (Figures 4-3 and 4-4). Together, all these locations make up the Direct-Penetrating Radiation Network. Neighborhood Environmental Watch Network stations, which measure gamma radiation, are situated near these areas but are off Laboratory property. The locations are listed in Supplemental Table S4-1.

Gamma radiation occurs naturally in ranges from 100 millirem to 200 millirem per year, so it is difficult to distinguish the much smaller levels of radiation contributed by the Laboratory. Radiation from the Laboratory is identified by higher radiation levels near the source and reduced radiation levels at greater distances.

Neutron Radiation
Neutron doses are measured near known or suspected sources of neutrons, including Technical Areas 53 and 54. At 52 locations, the accuracy of the neutron measurements is enhanced by the addition of Lucite blocks that reflect neutrons into the dosimeter. The neutron background is measured at locations far from Laboratory sources (Table S4-1).

Quality Assurance
The Radiation Protection Division dosimetry laboratory is accredited by the DOE Laboratory Accreditation Program, and the Radiation Protection Division provides quality assurance for the dosimeters.

Results
Table 4-9 summarizes 2019 gamma radiation data. Laboratory staff compared 2019 results to values recorded in previous years at those stations. At regional locations, the gamma radiation is natural and, as expected, it has not changed. At perimeter stations, the gamma radiation is generally higher than at regional stations because of the increased cosmic radiation at higher altitudes and the increased uranium and thorium in the soil. At these stations, the radiation is mostly natural and, as expected, the 2019 data are similar to previous data. Onsite, the slight decrease likely is not statistically significant. At the accelerator facility located at the Los Alamos Neutron Science Center, there is measurable radiation from the accelerator, which varies from year to year. At the Area G waste site, there is a downward trend as waste is sent to the Waste Isolation Pilot Plant in Carlsbad, New Mexico.
Table 4.9. Gamma Radiation for 2019—Group Summaries

<table>
<thead>
<tr>
<th>Station Grouping</th>
<th>Number of Stations</th>
<th>Group Mean ± 1 Standard Deviation (millirem)</th>
<th>Maximum Station Activity (millirem)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Previous</td>
<td>2019</td>
</tr>
<tr>
<td>Regional</td>
<td>11</td>
<td>118 ± 16</td>
<td>115 ± 15</td>
</tr>
<tr>
<td>Perimeter</td>
<td>25</td>
<td>127 ± 10</td>
<td>124 ± 10</td>
</tr>
<tr>
<td>Onsite</td>
<td>3</td>
<td>130 ± 11</td>
<td>117 ± 9</td>
</tr>
<tr>
<td>LANSCE</td>
<td>8</td>
<td>143 ± 24</td>
<td>134 ± 14</td>
</tr>
<tr>
<td>Waste site</td>
<td>33</td>
<td>208 ± 123</td>
<td>153 ± 31</td>
</tr>
</tbody>
</table>

Table 4-10 summarizes the neutron radiation data. At regional stations, the radiation is natural and there is no change. Similar to the gamma radiation data, for waste site locations near Area G, there is a decreasing trend as waste is sent offsite.

Table 4-10. Neutron Radiation for 2019—Group Summaries

<table>
<thead>
<tr>
<th>Station Grouping</th>
<th>Number of Stations</th>
<th>Group Mean ± 1 Standard Deviation (millirem)</th>
<th>Maximum Station Activity (millirem)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Previous</td>
<td>2019</td>
</tr>
<tr>
<td>Regional</td>
<td>7</td>
<td>2.6 ± 1.5</td>
<td>2.8 ± 1.6</td>
</tr>
<tr>
<td>Perimeter</td>
<td>3</td>
<td>4.7 ± 4.0</td>
<td>2.1 ± 1.3</td>
</tr>
<tr>
<td>Onsite</td>
<td>10</td>
<td>2.4 ± 0.6</td>
<td>2.5 ± 0.8</td>
</tr>
<tr>
<td>LANSCE</td>
<td>8</td>
<td>3.6 ± 1.1</td>
<td>4.6 ± 1.2</td>
</tr>
<tr>
<td>Waste site</td>
<td>33</td>
<td>148 ± 195</td>
<td>32 ± 32</td>
</tr>
</tbody>
</table>

Detailed results are listed in Supplemental Table S4-1. Locations with a measurable contribution from Laboratory operations are discussed below.

Los Alamos Neutron Science Center at Technical Area 53

Figure 4-3 shows the locations of the dosimeters at Technical Area 53. Previous studies (McNaughton 2013) discuss the possibility that a member of the public on East Jemez Road, south of Technical Area 53, could be exposed to gamma and neutron radiation from the Los Alamos Neutron Science Center in Technical Area 53.

During 2019, dosimeter #115 in Technical Area 53 measured a gamma dose of 160 millirem per year, which is 35 millirem per year above the background of 125 millirem per year. Calculations (McNaughton 2013) show that the gamma dose at East Jemez Road is 0.2 percent of the dose measured by dosimeter #115, so the gamma dose at East Jemez Road was approximately 0.1 millirem per year near this location.

Also, dosimeter #124 at Technical Area 53 measured a neutron dose 7 millirem per year above background. Calculations (McNaughton 2013) show that the neutron dose at East Jemez Road is 10 percent of this value, so the neutron dose at East Jemez Road was 0.7 millirem per year near this location.
Figure 4-3. Locations of thermoluminescent dosimeters at Technical Area (TA) 53 that are part of the direct-penetrating radiation monitoring network (DPRNET)

Technical Area 54, Area G

Figure 4-4 shows the locations of the dosimeters at Technical Area 54, Area G. Area G is a controlled-access area, so the Area G data do not represent a potential public dose.

Dosimeters #642 through #645 are in Cañada del Buey. After subtracting background, these dosimeters in 2019 measured an annual neutron dose of 2 millirem. This is the dose that would be received by a person who is at the location of the dosimeters 24 hours per day, 365 days per year. As discussed in Chapter 8, an occupancy factor of 1/20 is applied (National Council on Radiation Protection and Measurements 2005), so the dose in Cañada del Buey at the dosimeters is calculated to be 2 millirem multiplied by 1/20, equaling approximately 0.1 millirem per year, which is similar to previous years.
Neighborhood Environmental Watch Network

During 2019, the Neighborhood Environmental Watch Network detected gamma-ray emissions from airborne radioactive material on March 19, July 14, and October 26. The total measured dose from these events was less than 0.01 millirem. Although they are not quantitative measurements, these observations indicate that the total dose from gamma-emitting material was far below the annual limit of 10 millirem.

Conclusion

Generally, the data are similar to previous years and show that emissions of direct-penetrating radiation from Laboratory facilities were far below DOE limits.

TOTAL PARTICULATE MATTER AIR MONITORING

Introduction

Particulate matter consists of smoke, dust, and other material that can be inhaled. Generally, it is not radioactive. Particulate matter in the air can be harmful in high concentrations. The total amount of respirable particulate matter is monitored at two locations: near the intersection of New Mexico State Road 4 and Rover Boulevard in White Rock, and at the Los Alamos Medical Center in Los Alamos.
Ambient Air Particulate Matter Concentrations
During 2019, the particulate matter concentrations remained well below the U.S. Environmental Protection Agency standard of 35 micrograms per cubic meter for particulate matter smaller than 2.5 micrometers. Typical concentrations (greater than 95 percent of the time) were less than 10 micrograms per cubic meter. The highest concentrations occurred during the spring from windblown dust and during the summer from wildfires.

METEOROLOGICAL MONITORING

Introduction
Weather data support many Laboratory activities, including emergency management and response, regulatory compliance, safety analysis, engineering studies, and environmental surveillance programs. The meteorological monitoring program measures wind speed and direction, temperature, pressure, relative humidity, dew point, precipitation, cloud cover, and solar and terrestrial radiation, among other variables. The meteorological monitoring plan (Dewart and Boggs 2014) provides details of the meteorological monitoring program. An electronic copy of the plan is available online at https://weathermachine.lanl.gov.

Monitoring Network
Currently, five meteorological towers gather weather data at the Laboratory (Figure 4-5). Four of the towers are located on mesa tops (Technical Areas 06, 49, 53, and 54) and one is in the bottom of Mortandad Canyon (Technical Area 05). An additional precipitation gage is located in the North Community of the Los Alamos townsite. The Technical Area 06 tower is the Laboratory’s official meteorological measurement station.
Sampling Procedures and Data Management

Laboratory staff place the weather-sensing instruments in areas with good exposure, usually in open fields, to avoid impacts on wind and precipitation measurements. Temperature and wind are measured at multiple height levels on open-lattice towers at Technical Areas 06, 49, 53, and 54. The multiple levels provide a vertical profile important in assessing wind speed and direction at different heights above ground and in assessing air stability conditions. The multiple levels also provide redundant measurements that support data-quality checks. Boom-mounted temperature sensors on the towers are shielded and aspirated (provided with constant air circulation) to minimize effects from direct sunlight. The Mortandad Canyon station includes a 10-meter tripod tower that measures wind only at
the top of the tower. Temperature and humidity are measured at near ground level (1.5 meters) at all stations except the North Community station, which only measures precipitation.

Data recorders at the stations read most of the instrument results every three seconds, average the results over a 15-minute period, and transmit the data by network connection, telephone modem, or cell phone to a computer workstation. The workstation program automatically edits measurements that fall outside of realistic ranges. For more than 50 years, the Laboratory has provided these daily weather statistics to the National Weather Service.

Climate

Los Alamos has a temperate, semi-arid mountain climate. Humidity is low, and clear skies are present about 75 percent of the time. These conditions lead to high solar heating during the day and strong radiative cooling at night. Winters are generally mild, with occasional winter storms. Spring is the windiest season. Summer is the rainy season, with frequent afternoon thunderstorms. Fall is typically dry, cool, and calm. The climate statistics summarized here are from analyses of historical meteorological databases maintained by the Laboratory’s meteorology program (Bowen 1990 and 1992 and Dewart et al. 2017).

December and January are the coldest months, when 90 percent of minimum temperatures are between 4 °F and 31 °F. Ninety percent of maximum temperatures, which are usually reached in midafternoon, are between 25 °F and 55 °F. Wintertime arctic air masses that descend into the central United States usually warm somewhat before they reach the southern latitude of Los Alamos, so subzero temperatures are not common. Winds during the winter are relatively light, so extreme wind chills are also not common.

Temperatures are highest from June through August, when 90 percent of maximum temperatures are between 67 °F and 89 °F. During the summer months, 90 percent of minimum temperatures are between 45 °F and 61 °F.

Average precipitation is calculated using data from 1981 to 2010 measured at the official Laboratory weather station at Technical Area 06. Other Laboratory stations do not have data going back 30 years, which are necessary for a consistent averaging period. The average annual precipitation, which includes both rain and the water equivalent from frozen precipitation, is 18.97 inches. The average annual snowfall is 57.5 inches. The largest winter precipitation events in Los Alamos are caused by storms approaching from the west to southwest. Snowfall amounts are occasionally enhanced as a result of orographic lifting as the storms travel up the high terrain. Table 4-11 presents the temperature and precipitation records set for Los Alamos from 1924 to 2019.

Table 4-11. Records Set between 1924 and 2019 for Los Alamos

<table>
<thead>
<tr>
<th>Type of Measurement</th>
<th>Record</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low temperature</td>
<td>–18 °F</td>
<td>January 13, 1963</td>
</tr>
<tr>
<td>High temperature</td>
<td>95.5 °F</td>
<td>June 19, 2016</td>
</tr>
<tr>
<td>Single-day rainfall</td>
<td>3.52 inches</td>
<td>September 13, 2013</td>
</tr>
<tr>
<td>Single-day snowfall</td>
<td>39 inches</td>
<td>January 15, 1987</td>
</tr>
</tbody>
</table>
The rainy season typically begins in early July and ends in mid-September. Afternoon thunderstorms form as moist air from the Gulf of California and the Gulf of Mexico is convectively, orographically, or both convectively and orographically lifted by the Jemez Mountains. The thunderstorms yield short, heavy downpours and an abundance of lightning.

The complex topography of Los Alamos influences local wind patterns. Often, a distinct daily cycle of winds occurs. As air close to the ground is heated during the day, it tends to flow uphill. During the night, cool air that forms close to the ground tends to flow downhill. As the daytime breeze flows up the Rio Grande valley, it adds a southerly component to the prevailing westerly winds of the Pajarito Plateau. Nighttime airflow enhances the local westerly winds. Flow in the east-west-oriented canyons of the Pajarito Plateau is generally aligned with the canyons, so canyon winds are usually from the west at night and from the east during the day. Winds on the Pajarito Plateau are faster during the day than at night. This is a result of vertical mixing that is driven by sunshine. During the day, the mixing is strong and brings momentum down to the surface, resulting in fast surface winds.

2019 in Perspective

Table 4-12 presents Los Alamos weather values during 2019. Figure 4-6 presents a graphical summary of Los Alamos temperature for 2019, with the daily high and low temperature at Technical Area 06 compared with the 1981 to 2010 normal values and record values from 1924 to the present. Most months were near or below average, except for the warm months of August and September. Precipitation was above average through April, but the rest of the year had mostly below-average precipitation along with a below-average monsoon season. The last line of Table 4-12 summarizes the year and shows that the overall average temperature was 0.3 °F above the 1981 to 2010 average, total precipitation was 0.98 inches below the average, and snowfall was 9.9 inches below the average. The mean temperature has been above average since 2010, annual precipitation has been below average since 2016, and annual snowfall has been below average since 2011.

A wind gust measured on March 13 of 63 miles per hour was the third highest recorded since Technical Area 06 tower began records in 1990. The strong winds were a result of a quickly developing intense storm called a “bomb cyclone.” This storm resulted in hundreds of trees falling, which caused power outages across the Laboratory.
Table 4-12. Monthly and Annual Climatological Data for 2019 at Los Alamos

<table>
<thead>
<tr>
<th>Month</th>
<th>Daily Maximum</th>
<th>Daily Minimum</th>
<th>Overall</th>
<th>Departure</th>
<th>Highest</th>
<th>Date</th>
<th>Lowest</th>
<th>Date</th>
<th>Total</th>
<th>Departure</th>
<th>Total</th>
<th>Departure</th>
<th>Average Speed</th>
<th>Departure</th>
<th>Speed</th>
<th>From</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>36.0</td>
<td>19.1</td>
<td>27.5</td>
<td>–1.8</td>
<td>46</td>
<td>21</td>
<td>4</td>
<td>3</td>
<td>1.35</td>
<td>0.40</td>
<td>22.1</td>
<td>8.8</td>
<td>4.5</td>
<td>–0.5</td>
<td>49</td>
<td>WNW</td>
<td>21</td>
</tr>
<tr>
<td>February</td>
<td>38.6</td>
<td>20.5</td>
<td>29.6</td>
<td>–3.3</td>
<td>51</td>
<td>27</td>
<td>9</td>
<td>20</td>
<td>1.04</td>
<td>0.18</td>
<td>13.2</td>
<td>2.3</td>
<td>6.8</td>
<td>1.0</td>
<td>50</td>
<td>WSW</td>
<td>15</td>
</tr>
<tr>
<td>March</td>
<td>49.9</td>
<td>30.7</td>
<td>40.3</td>
<td>1.0</td>
<td>67</td>
<td>27</td>
<td>21</td>
<td>4</td>
<td>3.21</td>
<td>2.01</td>
<td>0.3</td>
<td>–10.1</td>
<td>7.9</td>
<td>1.4</td>
<td>63</td>
<td>W</td>
<td>13</td>
</tr>
<tr>
<td>April</td>
<td>61.2</td>
<td>37.1</td>
<td>49.1</td>
<td>2.3</td>
<td>73</td>
<td>20</td>
<td>19</td>
<td>1</td>
<td>1.10</td>
<td>0.04</td>
<td>0</td>
<td>–3.4</td>
<td>7.6</td>
<td>0.0</td>
<td>53</td>
<td>WSW</td>
<td>10</td>
</tr>
<tr>
<td>May</td>
<td>63.3</td>
<td>39.9</td>
<td>51.6</td>
<td>–4.4</td>
<td>74</td>
<td>15</td>
<td>30</td>
<td>21</td>
<td>1.09</td>
<td>–0.30</td>
<td>0</td>
<td>–0.3</td>
<td>7.7</td>
<td>0.3</td>
<td>52</td>
<td>SW</td>
<td>26</td>
</tr>
<tr>
<td>June</td>
<td>78.1</td>
<td>50.5</td>
<td>64.3</td>
<td>–0.8</td>
<td>86</td>
<td>30</td>
<td>43</td>
<td>24</td>
<td>0.31</td>
<td>–1.20</td>
<td>0</td>
<td>0</td>
<td>7.9</td>
<td>0.8</td>
<td>43</td>
<td>W</td>
<td>4</td>
</tr>
<tr>
<td>July</td>
<td>83.6</td>
<td>57.4</td>
<td>70.5</td>
<td>2.3</td>
<td>90</td>
<td>19</td>
<td>51</td>
<td>2</td>
<td>3.15</td>
<td>0.33</td>
<td>0</td>
<td>0</td>
<td>5.8</td>
<td>0.2</td>
<td>38</td>
<td>NNE</td>
<td>13</td>
</tr>
<tr>
<td>August</td>
<td>83.6</td>
<td>56.9</td>
<td>70.2</td>
<td>4.4</td>
<td>91</td>
<td>26</td>
<td>52</td>
<td>12</td>
<td>2.33</td>
<td>–1.28</td>
<td>0</td>
<td>0</td>
<td>6.0</td>
<td>0.3</td>
<td>34</td>
<td>N</td>
<td>21</td>
</tr>
<tr>
<td>September</td>
<td>77.8</td>
<td>52.1</td>
<td>65.0</td>
<td>5.2</td>
<td>89</td>
<td>3</td>
<td>41</td>
<td>24</td>
<td>0.82</td>
<td>–1.19</td>
<td>0</td>
<td>0</td>
<td>6.2</td>
<td>0.4</td>
<td>35</td>
<td>SSW</td>
<td>19</td>
</tr>
<tr>
<td>October</td>
<td>60.5</td>
<td>33.7</td>
<td>47.1</td>
<td>–2.1</td>
<td>75</td>
<td>1</td>
<td>12</td>
<td>31</td>
<td>1.17</td>
<td>–0.38</td>
<td>1.1</td>
<td>–1.1</td>
<td>6.8</td>
<td>0.8</td>
<td>41</td>
<td>WSW</td>
<td>10</td>
</tr>
<tr>
<td>November</td>
<td>49.5</td>
<td>26.9</td>
<td>38.2</td>
<td>0.4</td>
<td>62</td>
<td>9</td>
<td>13</td>
<td>30</td>
<td>1.70</td>
<td>0.72</td>
<td>6.7</td>
<td>1.8</td>
<td>5.8</td>
<td>0.5</td>
<td>52</td>
<td>SSW</td>
<td>29</td>
</tr>
<tr>
<td>December</td>
<td>40.1</td>
<td>22.0</td>
<td>31.0</td>
<td>1.6</td>
<td>50</td>
<td>21</td>
<td>6</td>
<td>30</td>
<td>0.72</td>
<td>–0.29</td>
<td>4.2</td>
<td>–8.0</td>
<td>5.0</td>
<td>0.5</td>
<td>40</td>
<td>W</td>
<td>15</td>
</tr>
<tr>
<td>Year</td>
<td>60.2</td>
<td>37.2</td>
<td>48.7</td>
<td>0.3</td>
<td>91</td>
<td>Aug</td>
<td>4</td>
<td>Jan</td>
<td>17.99</td>
<td>–0.98</td>
<td>47.6</td>
<td>–9.9</td>
<td>6.5</td>
<td>0.5</td>
<td>63</td>
<td>W</td>
<td>Mar 13</td>
</tr>
</tbody>
</table>

1. Data from Technical Area 06, the official Los Alamos weather station
2. Wind data measured at 12 meters above the ground
3. Departure column indicates positive or negative departure from 1981 to 2010 (30-year) climatological average.
4. Departure column indicates positive or negative departure from 1990 to 2010 (21-year) climatological average.
Figure 4-6. Los Alamos 2019 temperatures in degrees Fahrenheit compared with record values and normal values

Figure 4-7 shows a graph of Los Alamos precipitation for 2019. Precipitation started the first half of the year above average, but then a dry monsoon season resulted in slightly below average precipitation for the year. For the year, Los Alamos received near-average precipitation at 17.99 inches (0.98 inches below average). Los Alamos measured nearly 11 inches of above-average snowfall during the first 2 months, but significant dry times during March and December resulted in approximately 10 inches of below-average snowfall for the year. According to the U.S. Drought Monitor, Los Alamos County recovered from exceptional drought conditions at the start of the year to no drought conditions by June, but ended the year with moderate drought conditions (https://droughtmonitor.unl.edu).

At the Laboratory’s monitoring stations across Los Alamos, approximately 50 percent of the annual precipitation falls during the summer monsoon season (based on the National Weather Service definition of June 15 to September 30). Typically, more precipitation is measured closer to the Jemez Mountains, and the Technical Area 54 tower near White Rock measures the least precipitation. Although not shown here, more precipitation fell during 2019 at Technical Area 06 and North Community compared to Technical Area 54.
Figure 4-7. Technical Area 06 cumulative precipitation in 2019 versus 30-year average, and the daily precipitation in 2019

Daytime winds (sunrise to sunset) and nighttime winds (sunset to sunrise) are shown in the form of wind roses in Figure 4-8. The wind roses are based on 15-minute average wind observations for 2019 at the four mesa-top stations. Wind roses depict the percentage of time that wind blows from each of 16 directions and the distribution of wind speed. During the day, winds are typically from the south and southwest, while at night the winds are from the west and northwest. Although not shown here, wind roses from different years are almost identical in terms of the distribution of wind directions, indicating that wind patterns are constant when averaged over a year.
Figure 4-8. Wind roses for 2019 at the four mesa-top meteorological towers
Long-Term Climate Trends

Temperature and precipitation data have been collected in the Los Alamos area since 1910. Figure 4-9 shows the historical record of temperatures in Los Alamos from 1924 through 2019. The annual average temperature is the midpoint between daily high and low temperatures, averaged for the year. One-year averages are shown in green in Figure 4-9. To aid in showing longer-term trends, the 5-year running average is also shown in black. With 5-year averaging, for example, the warm spell during the past 15 years is more extreme than the warm spell during the early-to-mid 1950s and is longer-lived. Five of the hottest summers on record have occurred since 2002. The highest summertime (June, July, and August) average temperature on record was 71.1 °F, recorded during 2011.

Figure 4-9. Temperature history for Los Alamos with the 1-year average in green and 5-year running average in black. The dashed lines represent long-term averages (25 and 30 years).

The average temperatures per decade, recorded at Technical Area 06, along with two times the standard error, are plotted in Figure 4-10. Ninety-five percent of the annual average temperatures during each decade is found within the error bars. During the decades between 1960 and 2000, the annual average temperatures in Los Alamos varied only slightly from 48 °F. During the 2001–2010 decade, the annual average temperature increased to above 49 °F; this value is statistically significantly higher than previous decades. During the recent 2010–2019 decade, the average temperature increased even more than the previous decade, with annual temperatures above 50 °F. This is consistent with predictions for a warming climate in the southwestern United States (Intergovernmental Panel on Climate Change 2014).
Figure 4-10. Technical Area 06 decadal average temperatures with two times the standard error for 1960 through 2019

Figure 4-11 presents the historical record of the annual precipitation at Technical Area 06. As with the historical temperature profile, the 5-year running average and the 30-year average values are also shown. The most recent drought has essentially spanned the years 1998–2019, although near-average precipitation years occurred from 2004–2010, and above-average precipitation occurred in 2015.

Figure 4-11. Total precipitation history for Los Alamos with the 1-year average in green, 5-year running average in black, and the dashed lines representing long-term averages (25 and 30 years)
QUALITY ASSURANCE

Air Quality Sampling

The quality assurance program satisfies requirements in the U.S. Environmental Protection Agency’s *National Emission Standards for Hazardous Air Pollutants*, Title 40, Part 61 of the Code of Federal Regulations, Appendix B, Method 114. The quality assurance project plans and implementing procedures specify the requirements and implementation of sample collection, sample management, chemical analysis, and data management. The requirements follow U.S. Environmental Protection Agency methods for sample handling, chain of custody, analytical chemistry, and statistical analyses of data.

The quality assurance plan for ambient air sampling is described in the procedure “Quality Assurance Project Plan for the Radiological Air Sampling Network,” SOP-5140, and 25 supporting procedures. The stack sampling quality assurance plan is described in the procedure “Rad-NESHAP Compliance Program, Program Implementation Plan,” EPC-CP-PIP-0101, and 42 supporting procedures.

Direct Radiation Monitoring

The quality assurance plan for direct-penetrating radiation is described in the procedure *Direct Penetrating Radiation Monitoring Network (DPRNET)*, EPC-ES-TPP-007, and the procedure *Obtaining the Environmental Dose from the Model 8823 Dosimeter*, EPC-ES-TP-002. Quality Assurance for the Model 8823 Dosimeter is provided by the Radiation Protection Division dosimetry laboratory, which is accredited by the DOE Laboratory Accreditation Program.

Meteorological Monitoring

Time-series plots of data are generated for a meteorologist to conduct a data-quality review. Daily statistics such as daily minimum and maximum temperatures, daily total precipitation, and maximum wind gust are also generated and checked for quality.

Laboratory staff follow manufacturers’ recommendations and consider operating conditions to determine how often to calibrate the weather-sensing instruments. All wind instruments are calibrated every six months. All other sensors are calibrated annually, with the exception of solar radiation sensors, which are calibrated every 5 years. An external audit of the instruments and methods is performed periodically. A subcontractor inspects and performs maintenance on the stations annually.

REFERENCES

Los Alamos National Laboratory (LANL, or the Laboratory) monitors and characterizes groundwater as part of its groundwater protection program and implementation of the Consent Order. We collect and analyze hundreds of groundwater samples each year for a wide range of organic and inorganic constituents and radionuclides. We also implement measures to control contaminant migration.

Chemicals from historical Laboratory operations are present in some locations in perched-intermediate groundwater zones and in the regional aquifer. These chemicals are associated with past liquid effluent releases from Laboratory outfalls (the discharge point of a liquid waste stream into the environment). We use sampling results from some groundwater wells to define the nature and extent of known contaminant plumes and to evaluate and model changes in plume location and concentrations over time. This information guides corrective actions where they are needed. We use other wells to monitor for any new contamination. The results are used to ensure compliance with the requirements of the U.S. Department of Energy orders and New Mexico and federal regulations.

Site-wide groundwater characterization and monitoring indicate that there are only two notable areas of groundwater contamination at the Laboratory: an RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) plume beneath Cañon de Valle in the vicinity of Technical Area 16 and a chromium plume beneath Sandia and Mortandad Canyons.

RDX, primarily associated with historical machining of high explosives at Technical Area 16, has infiltrated into groundwater beneath Cañon de Valle. In some areas of perched-intermediate groundwater and the regional aquifer, it exceeds the New Mexico tap water screening level of 9.66 micrograms per liter. The RDX plume in the perched-intermediate groundwater and regional aquifer is completely within the LANL boundary and is approximately 3 miles from the nearest public water supply wells.

Hexavalent chromium from releases that occurred from 1956 to 1972 is present in the regional aquifer beneath Sandia and Mortandad Canyons at concentrations above the New Mexico groundwater standard of 50 micrograms per liter. Corrective actions to address the plume are ongoing.

In addition, the groundwater protection program provides monitoring for current Laboratory operations. This includes monitoring required by authorizations issued by the New Mexico Environment Department’s Groundwater Quality Bureau such as groundwater discharge permits and monitoring required to meet facility groundwater monitoring plan requirements in accordance with the Laboratory’s Hazardous Waste Facility Permit.
INTRODUCTION

Los Alamos National Laboratory (LANL, or the Laboratory) routinely monitors the quality of local groundwater. A regional aquifer is present beneath the Laboratory at depths ranging from 600 to 1,200 feet below the ground surface. Our groundwater monitoring and protection efforts focus on the regional aquifer because of its use for water supply, but also include limited areas of groundwater found within canyon-floor sediments and within rocks and sediments at intermediate depths below the canyon bottoms and above the regional aquifer.

U.S. Department of Energy (DOE) Order 458.1 Chg 3, Radiation Protection of the Public and the Environment, requires operators of DOE facilities to ensure that radionuclides from DOE activities do not cause private or public drinking water systems to exceed the drinking water maximum contaminant levels in the National Primary Drinking Water Regulations, Title 40, Part 141 of the Code of Federal Regulations. Operators must also ensure that baseline conditions of the groundwater quantity and quality are documented.

In 2016, DOE and the New Mexico Environment Department signed a new Compliance Order on Consent addressing legacy waste cleanup (the previous consent order was signed in 2005). The consent order continues to require the Laboratory to submit an Interim Facility-Wide Groundwater Monitoring Plan to the New Mexico Environment Department for approval each year. The monitoring locations, frequency of monitoring, and substances to be monitored are updated in the plan each year. In April 2018, the legacy waste cleanup contractor Newport News Nuclear BWXT-Los Alamos, LLC (N3B) assumed responsibility for implementing the groundwater program in accordance with the approved Interim Facility-Wide Groundwater Monitoring Plans (N3B 2018, 2019). Some additional groundwater monitoring activities at the Laboratory are required under LANL’s Hazardous Waste Facility Permit and groundwater discharge permits (see Chapter 2).

HYDROGEOLOGIC SETTING

The following section describes the distribution and movement of groundwater at the Laboratory and includes a summary of groundwater contaminant sources and distribution. Additional details can be found in reports available at the Laboratory’s electronic public reading room, located at http://eprr.lanl.gov.

The Laboratory is located in Northern New Mexico on the Pajarito Plateau. The Pajarito Plateau extends from the Sierra de los Valles range of the Jemez Mountains eastward to the Rio Grande. Rocks composed of Bandelier Tuff are the uppermost layer of the plateau (Figure 5-1). The tuff was formed from ash and other volcanic materials that erupted 1.6 to 1.2 million years ago from the volcanic field of the Jemez Mountains (a volcanic field is an area with a geologic history of volcanic activity). The tuff is more than 1,000 feet thick in the western part of the plateau and thins to about 260 feet above the Rio Grande.
On the western edge of the Pajarito Plateau, the Bandelier Tuff overlaps the Tschicoma Formation, which consists of older volcanic deposits (Figure 5-1). The Puye Formation, a largely unconsolidated sedimentary deposit, underlies the tuff beneath the central and eastern portion of the plateau. The Puye Formation consists of sand and gravel that washed off the Sierra de los Valles prior to the eruptions producing the Bandelier Tuff. The Cerros del Rio basalt flows, which originated mostly from a volcanic center east of the Rio Grande, extend into the Puye Formation beneath the Laboratory. These formations all overlie the sediments of the Santa Fe Group, which cross the Rio Grande valley and are more than 3,300 feet thick.

The Laboratory sits atop a thick zone of mainly unsaturated rock and sediments. Groundwater beneath the Pajarito Plateau occurs in three modes (Figure 5-2):

1. perched alluvial groundwater in the bottom of some canyons,
2. small areas of perched-intermediate groundwater, and
3. the regional aquifer.

Perched alluvial groundwater is a limited area of saturated rocks and sediments directly below canyon bottoms. Surface water moves through the alluvium until downward flow is disrupted by less-permeable layers of rock, resulting in shallow perched bodies of groundwater. Most of the canyons on the Pajarito Plateau have infrequent surface water flow and, therefore, little or no alluvial groundwater. A few canyons have saturated alluvium in their western ends supported by runoff from the

Figure 5-1. Generalized geologic cross-section of the Pajarito Plateau

Hydrogeologic Terms

- **Saturated** rock or sediment is completely wet. **Unsaturated** rock or sediment has air in its pore spaces.
- **Perched** groundwater is a zone of saturation of limited thickness that occurs above the regional aquifer.
- **Alluvial** groundwater is a zone of saturation that exists in sands and gravels in the bottoms of canyons.
Jemez Mountains. In some locations, surface water is supplemented or maintained by discharges from Laboratory outfalls. As alluvial groundwater moves down a canyon, it is used and transpired by plants, or percolates into underlying rock or sediments.

Figure 5-2. Illustration of geologic and hydrologic relationships on the Pajarito Plateau showing the three modes of groundwater occurrence: perched alluvial groundwater, perched-intermediate-depth groundwater, and groundwater within the regional aquifer.

Perched-intermediate groundwater occurs within the lower part of the Bandelier Tuff, within the Puye Formation, and within the Cerros del Rio basalt beneath some canyons. These intermediate-depth groundwater bodies are formed in part by water moving downward from beneath the canyons until it reaches a layer of rock that allows little or no water to pass through. Depths of the perched-intermediate groundwater zones vary. For example, the depth to perched-intermediate groundwater is approximately 120 feet beneath Pueblo Canyon, 450 feet beneath Sandia Canyon, and 500 to 750 feet beneath Mortandad Canyon.

The uppermost level of water in the regional aquifer, known as the water table, occurs at a depth of approximately 1,200 feet below ground surface along the western edge of the plateau and 600 feet below ground surface along the eastern edge (Figures 5-1 and 5-3). Studies indicate that water from the Sierra de los Valles is the main source of recharge for the regional aquifer (LANL 2005a). Groundwater near the water table generally flows east with local northeast or southeast flows observed. The speed of groundwater flow varies but is typically around 30 feet per year. The regional aquifer is separated from alluvial and perched-intermediate groundwater by layers of unsaturated tuff, basalt, and sediment. The limited extent of the alluvial and intermediate groundwater bodies, along with unsaturated rock and sediment that underlies them, restricts their contribution to recharging the regional aquifer, although locally they are important parts of the complete hydrologic pathway to the regional aquifer.
Figure 5-3. Contour map of average water table elevations for the regional aquifer. This map is a generalization of the data.
This page intentionally blank.
GROUNDWATER STANDARDS AND SCREENING LEVELS

Regulatory Overview

The screening levels listed in Table 5-1 are used to evaluate results from groundwater samples reported in this chapter. In general, standards applied to drinking water systems are frequently used as screening criteria for evaluating groundwater quality. Exceedance of a screening level indicates that further evaluation of risk may be needed.

Groundwater standards and screening levels are established by three regulatory agencies. DOE has authority under the Atomic Energy Act of 1954 to set standards for certain nuclear materials. The U.S. Environmental Protection Agency and the New Mexico Water Quality Control Commission set screening levels and standards for other constituents.

DOE Order 458.1 Chg 3, *Radiation Protection of the Public and the Environment*, establishes dose limits for radiation exposure and provides derived concentration technical standards for radionuclide levels in air and water based on those limits. For drinking water, DOE’s derived concentration technical standards are calculated based on the U.S. Environmental Protection Agency’s 4-millirem-per-year drinking water dose limit.

The U.S. Environmental Protection Agency Safe Drinking Water Act’s maximum contaminant levels are the maximum permissible level of a contaminant in water delivered to any user of a public water system.

The New Mexico Water Quality Control Commission groundwater standards, found in *Ground and Surface Water Protection*, Title 20, Chapter 6, Part 2 of the New Mexico Administrative Code, apply to all groundwater with a total dissolved solids concentration of 10,000 milligrams per liter or less. These standards include numeric criteria for many substances. In addition, the standards contain a separate list of toxic pollutants.

The 2016 Compliance Order on Consent requires screening and reporting of groundwater data and describes the screening criteria. In general, the screening levels are the lower of either the New Mexico groundwater quality standard or the federal maximum contaminant level. If neither of these exist for a given chemical, the New Mexico Environment Department’s tap water screening levels, provided in the *Risk Assessment Guidance for Site Investigations and Remediation: Volume I, Soil Screening Guidance for Human Health Risk Assessments* (New Mexico Environment Department 2019), are applied. These values are available in Table A-1 of that document. If no New Mexico Environment Department tap water screening level has been established for the chemical, then the U.S. Environmental Protection Agency’s regional human health medium-specific screening level for tap water, adjusted to a 1×10^{-5} excess risk for carcinogenic contaminants, is used. The U.S. Environmental Protection Agency updates the regional screening levels for tap water several times each year; 2018 values were used to prepare this chapter. Updated New Mexico Water Quality Control Commission groundwater standards went into effect in December 2018 with revised standards for some additional constituents becoming effective in July 2020.
<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Constituent</th>
<th>Screening Levels</th>
<th>References</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Water supply wells | Radionuclides | • New Mexico groundwater standards
• Concentration technical standards derived from DOE’s 4-millirem-per-year drinking water dose limit
• U.S. Environmental Protection Agency maximum contaminant levels | • 20.6.2 New Mexico Administrative Code
• DOE Order 458.1 Chg 3
• Code of Federal Regulations Title 40, Parts 141–143 | This sampling is in addition to the regulatory compliance sampling conducted by the water supply system operator (see Water Supply Monitoring section below). |
| Water supply wells | Nonradionuclides | • New Mexico groundwater standards
• U.S. Environmental Protection Agency maximum contaminant levels | • 20.6.2 New Mexico Administrative Code
• Code of Federal Regulations Title 40, Parts 141–143 | This sampling is in addition to the regulatory compliance sampling conducted by the water supply system operator (see Water Supply Monitoring section below). |
| Non-water–supply | Radionuclides | • New Mexico groundwater standards
• Concentration technical standards derived from DOE’s 4-millirem-per-year drinking water dose limit
• U.S. Environmental Protection Agency maximum contaminant levels | • 20.6.2 New Mexico Administrative Code
• DOE Order 458.1 Chg 3
• Code of Federal Regulations Title 40, Parts 141–143 | New Mexico groundwater standards apply to all groundwater. The concentration technical standards (derived from DOE’s 4-millirem-per-year drinking water dose limit) and U.S. Environmental Protection Agency maximum contaminant levels are for comparison only. |
| Non-water–supply | Nonradionuclides | • New Mexico groundwater standards
• U.S. Environmental Protection Agency maximum contaminant levels
• U.S. Environmental Protection Agency regional screening levels for tap water | • 20.6.2 New Mexico Administrative Code
• Code of Federal Regulations Title 40, Parts 141–143
• 2016 Compliance Order on Consent | A hierarchy of levels applies as screening levels for groundwater. See text for explanation. |
This page intentionally blank.
The New Mexico Water Quality Control Commission numeric criteria for contaminant concentrations mostly apply to filtered water samples, which represent the concentration of a constituent dissolved in groundwater. However, the standards for mercury, organic compounds, and nonaqueous phase liquids apply to unfiltered samples, which represent both the dissolved concentration of the constituent and the concentration associated with suspended sediments in the groundwater sample. The U.S. Environmental Protection Agency maximum contaminant levels and regional screening levels for tap water are applied to both filtered and unfiltered sample results.

For radioactivity in groundwater, we screen sample results by comparing them with the New Mexico Water Quality Control Commission groundwater standards for combined radium-226 and radium-228, DOE’s drinking water concentration technical standards (derived from DOE’s 4-millirem-per-year dose limit), and with the U.S. Environmental Protection Agency maximum contaminant level drinking water standards.

POTENTIAL SOURCES OF CONTAMINATION

Historical discharges from Laboratory operations have affected all three groundwater zones. Figure 5-4 shows the key locations of historical effluent discharges.

Drainages that received effluent in the past include Mortandad Canyon, Pueblo Canyon from its tributary Acid Canyon, and Los Alamos Canyon from its tributary DP Canyon (Figure 5-4). Rogers (2001) and Emelity (1996) summarize effluent discharge history at the Laboratory.

Sandia Canyon has received discharges of power plant cooling water, other cooling tower water, and water from the Laboratory’s current Sanitary Waste Water Systems Plant. Water Canyon and its tributary Cañon de Valle have received effluents produced by high-explosives processing and experimentation. Over the years, Los Alamos County has operated several sanitary waste water treatment plants in Pueblo Canyon. The Laboratory also had several sanitary treatment plants.

Since the early 1990s, the Laboratory has significantly reduced both the number of industrial outfalls and the volume of water discharged. The quality of the remaining discharges has been improved through treatment process improvements so that they meet applicable standards.

A site-wide sampling program is underway for the emerging contaminants known as per- and polyfluoroalkyl substances (PFAS). Initial results show no detections above screening levels. Further information will be provided in next year’s report.

GROUNDWATER MONITORING NETWORK

We monitor water quality and other characteristics at alluvial, perched-intermediate, and regional aquifer wells and at springs that represent perched-intermediate and regional aquifer groundwater. These wells and springs are primarily grouped into area-specific monitoring groups to address the unique monitoring objectives of each group. Area-specific monitoring groups include Technical Area 54, Technical Area 21, Material Disposal Area AB, Material Disposal Area C, the Chromium Investigation, and the Technical Area 16 260 outfall (Figure 5-5). Locations that are not included within one of these six area-specific monitoring groups are assigned to the General Surveillance monitoring group (Figure 5-6). Numerous springs along the Rio Grande are also monitored (Figure 5-7; Purtymun et al. 1980).
We also monitor groundwater quality at three alluvial, two intermediate, and four regional aquifer wells for Laboratory operations that have groundwater discharge permits (see Chapter 2, New Mexico Water Quality Act: Groundwater Discharge Regulations). Alluvial wells SCA-3, MCA-RLW-1, and MCA-RLW-2 are operated for discharge permit compliance purposes only, and results are summarized in the section Groundwater Discharge Permit Monitoring below. Operational monitoring required under LANL’s Hazardous Waste Facility Permit is currently included within the annually approved Interim Facility-Wide Groundwater Monitoring Plan and results are reported throughout this chapter.

We collect samples from 12 Los Alamos County water supply wells (Figure 5-7), from wells located on Pueblo de San Ildefonso lands, and from the Buckman well field operated by the city of Santa Fe. Groundwater monitoring locations on the Pueblo de San Ildefonso lands are shown in Figure 5-7; they mainly discharge from the regional aquifer. However, Vine Tree Spring (near the former sampling location Basalt Spring) and Los Alamos Spring discharge from perched-intermediate groundwater, and wells LLAO-1b and LLAO-4 monitor alluvial groundwater.
Figure 5-4. Major liquid release outfalls potentially affecting groundwater; most outfalls shown are currently inactive.
Note: MDA = Material disposal area

Figure 5-5. Groundwater monitoring wells and springs assigned to area-specific monitoring groups
Figure 5-6. Groundwater monitoring wells and springs assigned to watershed-specific portions of the General Surveillance monitoring group.
Figure 5-7. Water supply wells and piezometers used for monitoring at Los Alamos County, the city of Santa Fe Buckman well field, and Pueblo de San Ildefonso, and springs used for groundwater monitoring in White Rock Canyon.
GROUNDWATER DATA INTERPRETATION

Analytical laboratory results are reported in relation to several limits. The method detection limit is the lowest concentration of a substance in a sample that the laboratory can state with 99 percent confidence is greater than zero. The method detection limit is determined from analysis of a set of standardized samples containing the substance. A second limit reported by analytical laboratories is the practical quantitation limit. The practical quantitation limit is the lowest concentration of a substance in a sample that can be measured with a high degree of confidence. The practical quantitation limit is approximately (but not always) three times the method detection limit. Concentrations measured between the method detection limit and the practical quantitation limit are identified as estimated concentrations and marked with a “J” qualifier in the analytical report and in the results from the Intellus website.

A nondetect result indicates that the analytical laboratory did not detect the substance in the sample. These results are marked with a “U” qualifier. In the past, the Laboratory sometimes reported nondetect results at the practical quantitation limit value. Therefore, for older results, the detected but estimated results (results between the method detection limit and the practical quantitation limit) may have a lower reported value than nondetect results for the same substance. Recent groundwater sample nondetect results are reported at the method detection limit.

The method detection limit and practical quantitation limit do not apply to radiological measurements. For radiological measurements, the minimum detectable activity is similar to the method detection limit. To be considered a detected activity, a radiological measurement must be greater than the minimum detectable activity.

GROUNDWATER SAMPLING RESULTS BY MONITORING GROUP

The following sections discuss groundwater sampling results for the six area-specific monitoring groups, the General Surveillance monitoring group, springs along the Rio Grande, and Los Alamos County and City of Santa Fe water supply wells. The tables and discussions are grouped according to groundwater mode, proceeding from deepest (the regional aquifer) to shallowest (the alluvial groundwater). The accompanying tables and text mainly address constituents found at levels above screening levels. Other constituents that are below screening levels, such as tritium, are discussed in a few cases to track trends where potential Laboratory influences are observed. The discussion addresses radionuclides, inorganic compounds, inorganic elements (primarily metals), and organic compounds for each groundwater zone. The accompanying plots and maps provide temporal and spatial context.

Water Supply Monitoring

Los Alamos County

We collected samples from 12 Los Alamos County water supply wells that produce water for the community and the Laboratory (Figure 5-7). These samples supplement Los Alamos County’s regular monitoring and specifically address potential Laboratory contaminants. All drinking water produced by
the Los Alamos County water supply system meets federal and state drinking water standards as reported in the county’s annual drinking water quality report (available at https://www.losalamosnm.us/common/pages/DisplayFile.aspx?itemId=16814219). No water supply wells showed detections of Laboratory-related constituents above applicable drinking water standards.

City of Santa Fe

In 2019, we sampled three water supply wells (Buckman-1, Buckman-6, and Buckman-8) in the City of Santa Fe’s Buckman well field. Samples were also collected from four piezometers (wells typically used to measure water levels) in the well field (LANL 2012a). These samples supplement the City of Santa Fe’s regular monitoring and specifically address potential Laboratory contaminants. No Laboratory-related constituents were present above standards for these locations. The City of Santa Fe publishes an annual water quality report that provides additional information (https://www.santafenm.gov/water_quality).

Technical Area 21 Monitoring Group

Technical Area 21 is located on a mesa bordered by Los Alamos Canyon on the north and DP Canyon on the south. Technical Area 21 contains two past operational areas, DP West and DP East, both of which produced liquid and solid radioactive wastes. The operations at DP West included plutonium processing, while the operations at DP East included the production of weapons initiators and tritium research. From 1952 to 1986, a liquid waste treatment plant discharged effluent containing radionuclides from the plutonium processing facility at Technical Area 21 into DP Canyon (Figure 5-4).

Sources of potential groundwater pollutants in the vicinity of the Technical Area 21 monitoring group wells include the former liquid waste treatment plant outfall (Solid Waste Management Unit 21-011[k]), adsorption beds and disposal shafts at Material Disposal Area T, adsorption beds at Material Disposal Area U, the former Omega West reactor cooling tower (Solid Waste Management Unit 02-005), DP West, DP East, waste lines, an underground diesel fuel line, and sumps. The Technical Area 21 monitoring group includes wells in perched-intermediate groundwater and in the regional aquifer.

Samples from several wells that monitor perched-intermediate groundwater in the Technical Area 21 monitoring group have tritium that likely originated from the former liquid waste treatment plant, the Omega West Reactor, or both. Tritium concentrations in perched-intermediate wells R-6i, LAOI-3.2, LAOI-3.2a, and LAOI-7 in 2019 are generally consistent with concentrations measured in recent years (Figure 5-8; see Figure 5-5 for well locations). The highest tritium concentration among these wells in 2019 is 1,140 picocuries per liter in R-6i, down from 1,820 picocuries per liter in 2018. For comparison purposes, the U.S. Environmental Protection Agency maximum contaminant level for tritium in drinking water is 20,000 picocuries per liter.
CHAPTER 5 – GROUNDWATER PROTECTION

EPA MCL = The U.S. Environmental Protection Agency maximum contaminant level for tritium in drinking water.

Figure 5-8. Tritium concentrations in sampled perched-intermediate groundwater from wells in the Technical Area 21 monitoring group in Los Alamos Canyon

Chromium Investigation Monitoring Group

The Chromium Investigation monitoring group is located in Sandia and Mortandad Canyons. Chromium is present in the regional aquifer below these canyons at levels above the New Mexico Environment Department groundwater standard of 50 micrograms per liter in an area that is estimated to be approximately one mile in length and about a half-mile wide (Figures 5-9 and 5-10).

Through National Pollutant Discharge Elimination System Outfall 001, Sandia Canyon receives treated sanitary effluent from the Technical Area 46 sanitary waste water system plant as well as discharges from cooling towers for computing facilities and the Technical Area 03 power and steam plants. Groundwater monitoring related to current Laboratory operations discharging through National Pollutant Discharge Elimination System Outfall 001 is discussed in Chapter 2.

From 1956 to 1972, potassium dichromate was used as a corrosion inhibitor in the cooling system at the power plant (LANL 1973) and was present in the effluent discharged through the outfall. These discharges of potassium dichromate are the source of the hexavalent chromium observed in groundwater beneath Sandia and Mortandad Canyons. A conceptual model for the sources and spatial distribution of chemicals and radionuclides in groundwater in this area is presented in the Investigation Report for Sandia Canyon, the Phase II Investigation Report for Sandia Canyon (LANL 2009a, 2012b), and in the Compendium of Technical Reports Conducted Under the Work Plan for Chromium Plume Center Characterization (LANL 2018a). The conceptual model indicates that chromium originated from releases into Sandia Canyon and then migrated in the subsurface along geologic perching horizons to locations in the regional aquifer beneath Mortandad Canyon.
Figure 5-9. Approximation of the chromium plume footprint in the regional aquifer, as defined by the 50-microgram-per-liter New Mexico Environment Department groundwater standard, and locations of the chromium interim measures injection and extraction wells in 2019.
CHAPTER 5 – GROUNDWATER PROTECTION

Figure 5-10. The Chromium Investigation monitoring group perched-intermediate groundwater and regional aquifer monitoring wells. The white dashed outline encompasses the wells included in the monitoring group. Labels for the wells include maximum chromium concentrations in 2019 at wells with recorded concentrations greater than the New Mexico groundwater standard of 50 micrograms per liter (µg/L).
The chromium is found within 50 to 100 feet of the surface of the regional aquifer (LANL 2009a, 2012b, 2017, 2018b). The 2019 chromium concentrations exceeded the New Mexico groundwater standard of 50 micrograms per liter in three regional aquifer wells: R-62, R-50 screen 1, and R-43 screen 1 (Figure 5-11). Monitoring in 2019 primarily focused on characterizing and understanding the transport and fate of chromium and related contaminants in perched-intermediate groundwater and within the regional aquifer. We also evaluated the performance of interim measures being conducted to mitigate the chromium plume migration while alternatives for a final remedy for the plume are evaluated.

![Figure 5-11. Trends in chromium concentrations for three of the regional aquifer wells that exceeded the New Mexico Groundwater Standard (NM GW STD) for chromium of 50 micrograms per liter (µg/L)](image)

The Laboratory’s Interim Measures Work Plan for Chromium Plume Control (LANL 2015) presented an approach using extraction wells and injection wells to control plume migration. The Laboratory’s objective for the interim measures operations is to establish and maintain the portion of the plume containing 50 micrograms per liter or more of chromium completely within the Laboratory boundary. To accomplish this, we are currently extracting contaminated groundwater from five extraction wells, piping the extracted water to an aboveground ion exchange treatment system, and, following treatment, injecting the treated water back into the regional aquifer through five injection wells located in the downgradient portion of the area of contamination. Interim measures operations began in late 2016. During 2019, extraction and injection activities were conducted from January through early May and from July through December.

To date, the interim measures operations have focused along the northern boundary between the Laboratory and the Pueblo de San Ildefonso west of State Route 4 (Figure 5-9). Two regional aquifer wells, R-50 and R-44, monitor the effectiveness of the interim measure at the downgradient plume edge along that boundary. Well R-50 has 2 screens, one near the water table and one approximately 100 feet below the water table. The deeper of the two screens has shown consistent chromium concentrations.
within naturally occurring (background) levels, indicating that the chromium contamination at that location is less than 100 feet thick (Figure 5-12). The levels of chromium in R-50 screen 1 continue to steadily decrease over time in response to the interim measures, but showed a slight increase during the summer of 2019 when the interim measures operations were shut down for maintenance activities (Figure 5-12). Chromium concentrations in R-44 screen 1 and screen 2 have historically been below the New Mexico groundwater standard for chromium and are dropping further in response to the interim measures (Figure 5-12).

Interim measures operations along the northeastern portion of the plume began in late 2019. Therefore, chromium concentration data from monitoring wells in that portion of the plume, specifically R-11 and R-45 (2 screens), do not yet reflect the effects of the interim measures. Instead, data from those wells represent other factors that may affect trends in chromium concentrations, such as changes in chromium levels in water recharging the regional aquifer. Both R-11 and R-45 screens 1 and 2 showed decreasing concentrations in chromium independent of the interim measures (Figure 5-13).

Two wells located along the northwestern upgradient portion of the chromium plume, R-62 and R-43 (2 screens), continued to show increases in chromium concentrations in 2019 (Figure 5-14). A new monitoring well is scheduled for installation in this area to further characterize the extent of chromium contamination. Data from these wells will be used to evaluate whether mitigation actions are necessary in this area.

Two perched-intermediate groundwater wells had chromium concentrations above the standard: SCI-2 and MCOI-6. Chromium concentrations continue to decline in SCI-2 and remain steady in MCOI-6 (Figure 5-15).
Figure 5-13. Trends in chromium concentrations of two regional wells (R-11 and the two screens of R-45) in the Chromium Investigation monitoring group located along the northeast edge of the plume; these trends are not a reflection of the interim measure, but rather a trend in chromium concentrations in water recharging the regional aquifer. The New Mexico Groundwater Standard (NM GW STD) for chromium is 50 micrograms per liter (µg/L).

Figure 5-14. Regional monitoring wells R-43 (two screens) and R-62 are located on the northwestern portion of the chromium plume. These two wells show a continued increase in chromium concentrations in 2019.
A small area with perchlorate contamination is also present in groundwater beneath Mortandad Canyon. The primary source of perchlorate was effluent discharges from the Radioactive Liquid Waste Treatment Facility from 1963 until March 2002. Perchlorate is present above the New Mexico tap water screening level of 13.8 parts per billion in two perched-intermediate groundwater wells, MCOI-5 and MCOI-6 (Figure 5-16). In perched-intermediate well MCOI-6, the perchlorate concentration trends are relatively stable. Perchlorate concentrations at MCOI-5 have been decreasing. Perchlorate is also present in the regional aquifer, specifically at wells R-61 and R-15. Although R-15 perchlorate levels are below 13.8 parts per billion, the R-61 screen 1 has historically shown concentrations slightly above 13.8 parts per billion. We continue to monitor perchlorate and will incorporate necessary remedial actions as part of the chromium project because of their joint location in groundwater beneath Mortandad Canyon.

Other constituents detected in the Chromium Investigation monitoring group include 1,4-dioxane and tritium in perched-intermediate wells MCOI-5 and MCOI-6 (Figures 5-17 and 5-18). The trend for 1,4-dioxane has been primarily flat at MCOI-6, but it has recently shown an upward trend. Well MCOI-5 has had a continued increasing trend in 1,4-dioxane over the last few years, though between 2018 and 2019 we see a decrease in concentration from 27.9 micrograms per liter to 22.9 micrograms per liter. Concentrations of 1,4-dioxane are not present above the screening level of 4.59 micrograms per liter in the regional aquifer. Perched-intermediate wells MCOI-5 and MCOI-6 have tritium concentrations far below the U.S. Environmental Protection Agency maximum contaminant level for tritium in drinking water of 20,000 picocuries per liter.
Figure 5-16. Trends in perchlorate concentrations for perched-intermediate groundwater monitoring wells in the Chromium Investigation monitoring group with perchlorate detections above the New Mexico tap water screening level of 13.8 micrograms per liter (µg/L).

Figure 5-17. Concentrations of 1,4-dioxane in perched-intermediate groundwater monitoring wells with detections of 1,4-dioxane in the Chromium Investigation monitoring group. The New Mexico groundwater standard for 1,4-dioxane is 4.59 micrograms per liter (µg/L). Note: Samples collected in November were analyzed by two different methods. Additional samples will be collected to verify the trends.
EPA MCL = The U.S. Environmental Protection Agency maximum contaminant level for tritium in drinking water

Figure 5-18. Tritium concentrations in perched-intermediate groundwater monitoring wells in the Chromium Investigation monitoring group. The U.S. Environmental Protection Agency maximum contaminant level for tritium in drinking water is 20,000 picocuries per liter (pCi/L).

Material Disposal Area C Monitoring Group

Material Disposal Area C is located on Mesita del Buey in Technical Area 50, at the head of Ten Site Canyon. It is an inactive landfill where solid low-level radioactive wastes and chemical wastes were disposed of between 1948 and 1974. Vapor-phase volatile organic compounds and tritium are present in the upper 500 feet of the unsaturated soil and rock beneath Material Disposal Area C (LANL 2011a). The primary volatile organic compound is trichloroethene. The Material Disposal Area C monitoring group includes nearby regional aquifer monitoring wells (Figure 5-5). Monitoring data indicate no contamination is present in the groundwater in the regional aquifer immediately downgradient of Material Disposal Area C. No perched-intermediate groundwater is present beneath Material Disposal Area C.

Technical Area 54 Monitoring Group

Technical Area 54 is situated in the east-central portion of the Laboratory on Mesita del Buey. The technical area includes four material disposal areas designated as Areas G, H, J, and L; a waste characterization, storage, and transfer facility (Technical Area 54 West); active radioactive waste storage operations at Area G; hazardous and mixed-waste storage operations at Area L; and administrative and support areas.

At Technical Area 54, groundwater monitoring is conducted to support both (1) monitoring of solid waste management units and areas of concern (particularly Areas G, H, and L) under the Compliance Order on Consent and (2) the Laboratory’s Hazardous Waste Facility Permit. The Technical Area 54 monitoring group includes both perched-intermediate groundwater and regional wells (Figure 5-5).
Monitoring data show vapor-phase volatile organic compounds are present in the upper portion of the unsaturated zone beneath Areas G and L. The primary vapor-phase volatile organic compounds at Technical Area 54 are 1,1,1-trichloroethane; trichloroethene; and Freon-113. Tritium is also present (LANL 2005b, 2006, 2007).

There are a small number of detections of a variety of substances, including several volatile organic compounds, from the groundwater monitoring network around Technical Area 54. Tritium was not detected in any of the regional aquifer groundwater monitoring wells in the Technical Area 54 monitoring group. The chemical 1,4-dioxane was detected above the U.S. Environmental Protection Agency maximum contaminant level of 4.59 micrograms per liter at well R-37 screen 1. This is a first detection of this compound above the screening level at this well, and we will continue to monitor the trend here. The sporadic and limited spatial nature of the volatile organic compound detections and the lack of tritium suggest that Technical Area 54 may not be the source of the detected compounds (LANL 2009b).

Technical Area 16 260 Monitoring Group

Water Canyon and Cañon de Valle (a tributary of Water Canyon) cross the southwest portion of LANL where the Laboratory develops and tests explosives. In the past, the Laboratory released waste water into both canyons from several high-explosives processing facilities in Technical Areas 16 and 09 (Figure 5-4). The Technical Area 16 260 monitoring group was established for the upper Water Canyon/Cañon de Valle watershed to monitor substances released from Consolidated Unit 16-021(c)-99, which includes the Technical Area 16 260 outfall and associated solid waste management units. The Technical Area 16 260 outfall discharged high-explosives-bearing water from a high-explosives machining facility to Cañon de Valle from 1951 through 1996. These discharges served as a primary source of high-explosives and inorganic element contamination in the area (LANL 1998, 2003, 2011b). Current evidence indicates that over time, the effluent from the Technical Area 16 260 outfall, sometimes mixed with naturally occurring surface water and alluvial groundwater in Cañon de Valle, infiltrated from Cañon de Valle and percolated through unsaturated rock layers to perched-intermediate groundwater zones and ultimately into the regional aquifer.

Data indicate that springs, surface water, alluvial groundwater, and perched-intermediate groundwater in the area contain explosive compounds, including RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine); HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine); TNT (2,4,6-trinitrotoluene); and barium. RDX has been detected in the regional aquifer in wells R-18, R-63, R-68, and R-69 screens 1 and 2 (Figure 5-19 and Figure 5-20).

In addition, the volatile organic compounds tetrachloroethene and trichloroethylene, and boron have been detected in springs, alluvial groundwater, and perched-intermediate groundwater. Low concentrations of tetrachloroethene have been detected in the regional aquifer in wells R-25 screen 5, R-18, R-68, and R-69 screens 1 and 2.

RDX is the primary groundwater contaminant in this area and the only contaminant that exceeds its groundwater standard (9.66 micrograms per liter) in the regional aquifer. Two regional aquifer wells, R-68 and R-69 screens 1 and 2, have had RDX concentrations above the tap water screening level of 9.66 micrograms per liter. RDX concentrations in regional monitoring wells R-63 and R-18 were below the groundwater standard, but are exhibiting stable to increasing trends (Figure 5-20).
Figure 5-19. RDX concentrations in regional aquifer well R-68 and R-69 screens 1 and 2. The New Mexico groundwater standard for RDX is 9.66 micrograms per liter (µg/L).

Figure 5-20. RDX concentrations in regional aquifer wells R-18 and R-63. The New Mexico groundwater standard for RDX is 9.66 micrograms per liter (µg/L).

Figures 5-21, 5-22, and 5-23 show RDX concentrations in springs, alluvial wells, and perched-intermediate groundwater wells, respectively. The springs discharge from perched-intermediate groundwater zones.
Figure 5-21. RDX concentrations in two springs in Cañon de Valle, one spring in Martin Spring Canyon, and one spring in Bulldog Gulch, in Technical Area 16 (see locations in Figure 5-5). The New Mexico groundwater standard for RDX is 9.66 micrograms per liter (µg/L).

Figure 5-22. RDX concentrations in alluvial groundwater wells in Cañon de Valle and Fishladder Canyon. The New Mexico groundwater standard for RDX is 9.66 micrograms per liter (µg/L).
NMED A1 TAP SCRN LVL = New Mexico Environment Department tap water screening level.

Figure 5-23. RDX concentrations in perched-intermediate groundwater wells. The New Mexico groundwater standard for RDX is 9.66 micrograms per liter (µg/L).

Of the springs sampled, the concentrations of RDX are highest in Martin Spring (Figure 5-21). RDX concentrations at Burning Ground Spring have been relatively steady over the last five years (Figure 5-21), with the exception of samples collected in July 2015 and March 2019. SWSC Spring, near the former location of the Technical Area 16 260 outfall, does not have consistent flow, and it was not sampled in 2019.

RDX concentrations in alluvial monitoring wells show significant variability because of seasonal influences, but remain relatively low (Figure 5-22). RDX concentrations in each of the perched-intermediate groundwater wells show some variability (Figure 5-23). Long-term monitoring of some of these springs and alluvial wells is now included in the annual Interim Facility-Wide Groundwater Monitoring Plan (N3B 2018).

Other substances, including tetrachloroethene, trichloroethene, boron, and barium, are present in all groundwater zones but are well below applicable standards in the regional aquifer. We are currently investigating the extent and implications of RDX contamination in perched-intermediate and regional groundwater. A report on this investigation is scheduled for completion in 2020.

Material Disposal Area AB Monitoring Group

The Material Disposal Area AB monitoring group is located in Technical Area 49. Technical Area 49, also known as the Frijoles Mesa Site, is located on a mesa in the upper part of the Ancho Canyon drainage. Part of the area drains into Water Canyon. The canyons in the Ancho watershed are mainly dry with no known persistent alluvial groundwater zones and no known perched-intermediate groundwater.

Material Disposal Area AB was the site of nuclear weapons component testing from 1959 to 1961 (Purveymon and Stoker 1987, LANL 1988). The testing involved isotopes of uranium and plutonium; lead and beryllium; explosives such as TNT, RDX, and HMX; and barium nitrate. Some of this material remains
in shafts in the mesa top. Further information about activities, solid waste management units, and areas of concern at Technical Area 49 can be found in earlier Laboratory reports (LANL 2010a, 2010b).

In 2019, no constituents were found in Material Disposal Area AB monitoring group wells at concentrations above standards or screening levels.

White Rock Canyon Monitoring Group

The springs that flow along and near the Rio Grande in White Rock Canyon discharge predominantly regional aquifer groundwater (Purtymun et al. 1980). A few springs appear to represent discharge of perched-intermediate groundwater. Some other springs may discharge a mixture of regional aquifer groundwater, perched-intermediate groundwater, and percolation of recent precipitation (Longmire et al. 2007).

The White Rock Canyon springs serve as important monitoring points for evaluating the Laboratory’s potential impact to the Rio Grande (Figure 5-7). Consistent with prior years’ data, no springs that discharge groundwater from beneath the Laboratory into White Rock Canyon had any constituent concentrations above applicable groundwater standards or screening levels in 2019.

General Surveillance Monitoring

Los Alamos Canyon on Laboratory Property

Alluvial well LAO-3a in Los Alamos Canyon (Figure 5-6) continues to show strontium-90 concentrations above the U.S. Environmental Protection Agency’s 8 picocuries per liter maximum contaminant level (Figure 5-24). Alluvial well LAUZ-1 had not been sampled since 2011, but was sampled in 2018 and 2019. In 2019, the concentration of strontium-90 was 18.6 picocuries per liter, which is below the 2011 concentration of 64.5 picocuries per liter. The source of the strontium-90 is Solid Waste Management Unit 21-011(k), which was an outfall from industrial waste treatment at Technical Area 21. Strontium-90 is persistent at this location and in several downgradient alluvial wells near the confluence of DP Canyon with Los Alamos Canyon, but it has not been migrating to alluvial locations further down Los Alamos Canyon (LANL 2004).
EPA MCL = U.S. Environmental Protection Agency maximum contaminant level for drinking water

Figure 5-24. Strontium-90 concentrations at alluvial monitoring wells LAO-3a and LAUZ-1. The U.S. Environmental Protection Agency maximum contaminant level for strontium-90 in drinking water is 8 picocuries per liter (pCi/L).

Lower Los Alamos Canyon

Vine Tree Spring on Pueblo de San Ildefonso land represents discharge of perched-intermediate groundwater. Sampling at Vine Tree Spring began as a replacement for nearby Basalt Spring, which had been sampled since the 1950s until it dried up around 2010. The perchlorate concentration in Vine Tree Spring for 2019 is consistent with prior years’ data. The perchlorate contamination may be associated with historical Laboratory operations. For context, the perchlorate values are below the risk-based screening level of 13.8 micrograms per liter (Figure 5-25). The screening level for perchlorate is determined according to a hierarchical data-screening process required under the 2016 Consent Order.
Figure 5-25. Perchlorate concentrations at Vine Tree Spring. The New Mexico risk-based screening level for perchlorate is 13.8 micrograms per liter (µg/L).

Sandia Canyon

The General Surveillance monitoring group wells located in Sandia Canyon that are not part of the Chromium Investigation monitoring group include regional aquifer wells R-10 and R-10a and perched-intermediate well R-12; wells R-10 and R-10a are on Pueblo de San Ildefonso land. No constituents were measured near or above standards or screening levels in these wells during 2019.

Mortandad Canyon

Several regional aquifer wells in Mortandad Canyon are part of the General Surveillance monitoring group. No constituents were measured near or above standards or screening levels in these wells during 2019.

Under the groundwater discharge plan application for the Technical Area 50 Radioactive Liquid Waste Treatment Facility outfall, quarterly and annual samples are collected from seven alluvial, perched-intermediate, and regional aquifer wells to monitor Laboratory operational impacts from discharges to the outfall in Mortandad Canyon, as discussed in Chapter 2 and later in this chapter. Effluent treatment at the Radioactive Liquid Waste Treatment Facility was upgraded in 2002.

Historically, perchlorate has been detected in alluvial monitoring wells MCO-4B, MCO-6, and MCO-7 (Figure 5-26). Since the 2002 Radioactive Liquid Waste Treatment Facility upgrades, the perchlorate concentrations from the wells remain low relative to past perchlorate concentrations in Mortandad Canyon alluvial groundwater. All 2019 results are below the perchlorate groundwater screening level. Nitrate, fluoride, and total dissolved solids are also far below applicable standards in these alluvial wells.
NMED A1 TAP SCRN LVL = New Mexico Environment Department tap water screening level

Figure 5-26. Perchlorate concentrations at General Surveillance monitoring group and groundwater discharge plan monitoring wells MCO-4B, MCO-6, and MCO-7 in Mortandad Canyon alluvial groundwater. The New Mexico tap water screening level for perchlorate is 13.8 micrograms per liter (µg/L).

Cañada del Buey

Alluvial well CDBO-6 in Cañada del Buey was dry in 2019 and therefore not sampled.

Pajarito Canyon

Pajarito Canyon has a watershed that begins in the Sierra de los Valles west of the Laboratory. Twomile and Threemile Canyons at the Laboratory are tributaries of Pajarito Canyon. Saturated alluvium is present in portions of Pajarito Canyon, including a reach in lower Pajarito Canyon, but does not extend beyond the Laboratory’s eastern boundary. In the past, the Laboratory released small amounts of waste water into tributaries of Pajarito Canyon from several high-explosives processing sites at Technical Area 09. A nuclear materials experimental facility occupied the floor of Pajarito Canyon at Technical Area 18. Waste management areas at Technical Area 54 occupy the mesa north of the lower part of the canyon.

Solid Waste Management Unit 03-010(a) is the outfall area from a former vacuum repair shop behind the warehouse at Technical Area 03. The outfall area is located on a small tributary to Twomile Canyon. A small zone of shallow perched-intermediate groundwater is present and is apparently recharged by runoff from adjacent parking lots and building roofs. This perched groundwater is sampled at a depth of approximately 21 feet by well 03-B-13. In 2019, samples from this well contained 1,1,1-trichloroethane at concentrations below the New Mexico groundwater standard (Figure 5-27). Concentrations of 1,4-dioxane in 03-B-13 were the lowest ever recorded (Figure 5-28).

Several other alluvial and perched-intermediate groundwater and regional aquifer wells in Pajarito Canyon are part of the General Surveillance monitoring group. No constituents were measured near or above applicable standards or screening levels in these wells during 2019.
Los Alamos National Laboratory | 2019 Annual Site Environmental Report | 5-37

CHAPTER 5 – GROUNDWATER PROTECTION

NM GW STD = New Mexico groundwater standard

Figure 5-27. Concentrations of 1,1,1-trichloroethane in Pajarito Canyon perched-intermediate groundwater at General Surveillance monitoring group well 03-B-13. The New Mexico groundwater standard for 1,1,1-trichloroethane is 200 micrograms per liter (µg/L).

NMED A1 TAP SCRN LVL = New Mexico Environment Department tap water screening level

Figure 5-28. Concentrations of 1,4-dioxane in Pajarito Canyon perched-intermediate groundwater at General Surveillance monitoring group well 03-B-13. The New Mexico groundwater standard for 1,4-dioxane is 4.59 micrograms per liter (µg/L).

Water Canyon

Water Canyon has only one General Surveillance monitoring group location, alluvial well WCO-1r. For the March 15, 2019, sampling event, iron was detected at 1,560 micrograms per liter, which is above the 1,000 micrograms per liter New Mexico groundwater standard.
Groundwater Discharge Permit Monitoring

Groundwater monitoring completed in support of groundwater discharge permits (wells MCA-RLW-1, MCA-RLW-2, SCA-3, MCOI-6, SCI-1, R-1, R-14 Screen 1, R-46, and R-60) contained no constituents detected above applicable standards or screening levels in 2019. Alluvial wells MCA-RLW-1 and SCA-3 were dry during the monitoring period. It should be noted several analytes related to historical operations were detected in perched-intermediate aquifer well MCOI-6 above applicable standards or screening levels as presented in the Chromium Investigation monitoring group portion of this report.

SUMMARY

The Laboratory has been monitoring groundwater for many years. The groundwater monitoring network has been significantly expanded over the last decade. This expanded network has improved our understanding of the nature and extent of groundwater contamination. As described in this chapter, only two areas are showing groundwater contaminants that are of sufficient concentration and extent to warrant an action such as interim measures, further characterization, and potential remediation under the 2016 Consent Order: RDX contamination in the vicinity of Technical Area 16 and chromium contamination beneath Sandia and Mortandad Canyons. We will continue to implement interim measures in the chromium plume in 2020 and beyond. Further characterization work and studies to evaluate groundwater risks and potential remediation strategies are ongoing in both of these areas.

QUALITY ASSURANCE

All methods and procedures used to perform the field activities associated with this data are documented in the 2019 Interim Facility-Wide Groundwater Monitoring Plan (N3B 2018).

Sampling and data validation were conducted using Standard Operating Procedures that are a part of a comprehensive quality assurance program. Standard Operating Procedures include the following:

- “WCSF-Interim Facility-Wide Groundwater Monitoring” (LANL 2016, 601812)
- “Groundwater Sampling” (IWD-TPMC-LA-16-049)
- “Wireless Connect/Non-connected Component Plan – Standalone Wireless System Name: Groundwater Monitoring Well Data Acquisition System” (N3B-SD-016-CP-032/L2)
- “Locus Mobile Application for Groundwater Data Collection” (N3B-ER-SOP-20324)
- “Groundwater Sampling IPC-6” (N3B-ER-SOP-20032)
- “Groundwater Sampling and Sample Preservation” (N3B-ER-IWD-20088)
- “Manual Groundwater Level Measurements” (N3B-ER-SOP-20243)
- “Groundwater Level Data Processing, Review, and Validation” (N3B-ER-SOP-20231)
- “Validation of Volatile Organic Compound (VOC) Analytical Data” (N3B-ER-AP-20309)
- “Validation of Semi-volatile Organic Compound Analytical Data” (N3B-ER-AP-20310)
- “Validation of LC-MS/MS High Explosive Analytical Data” (N3B-ER-AP-20316)
- “Validation of Organochlorine Pesticide and Polychlorinated Biphenyl Analytical Data” (N3B-ER-AP-20311)
- “Validation of Metals and Cyanide Analytical Data” (N3B-ER-AP-20313)
- “Validation of Gamma Spectroscopy, Chemical Separation Alpha Spectrometry, Gas Proportional Counting, and Liquid Scintillation Analytical Data” (N3B-ER-AP-20314)
- “Validation of General Chemistry Analytical Data” (N3B-ER-AP-20315)
• “Validation of High Explosive Analytical Data by LC-MS/MS” (N3B-ER-AP-20316)
• “Validation of Dioxin and Furan Analytical Data” (N3B-ER-AP-20320)
• “Validation of Chlorinated Biphenyl Congener Analytical Data” (N3B-ER-AP-20318)
• “Validation of Total Petroleum Hydrocarbons Gasoline Range Organics/Diesel Range Organics Analytical Data” (N3B-ER-AP-20319)
• “Validation of LC-MS/MS Perchlorate Analytical Data” (N3B-ER-AP-20320)

Procedures for Collecting Groundwater Samples

The Laboratory has several standard operating procedures for collecting groundwater samples and samples from springs that discharge groundwater. These procedures (or their equivalent used by sampling subcontractors) are used in accordance with the “Interim Facility-Wide Groundwater Monitoring Plan for the 2019 Monitoring Year, October 2018–September 2019” and the “Interim Facility-Wide Groundwater Monitoring Plan for the 2020 Monitoring Year, October 2019–September 2020” (N3B 2018, 2019).

REFERENCES

This page intentionally blank.
Los Alamos National Laboratory (LANL, or the Laboratory) collects and analyzes storm water runoff to check for a variety of substances and characteristics, such as chemical and radionuclide levels, the volume and duration of flow, and the total amount of suspended sediment. We compare these sampling results with New Mexico water quality standards, target action levels, and radiological dose guidelines. The State of New Mexico uses our surface water data in updating its determinations of impaired waters on and near the Laboratory every two years.

We also analyze newly deposited sediment samples each year for chemical and radionuclide levels. We compare sediment-sampling results with human and ecological health screening criteria.

The data collected in 2019 and presented in this chapter are used to verify that during 2019, the storm water–related transport of chemicals or radionuclides did not cause levels of those substances to exceed the levels found during the canyons investigations of 2004–2011. We have found that over time, at any given sampling location, storm water–related transport of sediments generally results in similar or lower levels of Laboratory-released chemicals and radionuclides at that location than previously existed because of the deposit of new sediments. The results of the sediment and surface water data collected in 2019 support the conclusion that the risk assessments presented in the canyons investigation reports represent an upper bound of risks from these substances in the canyons for the foreseeable future. The Laboratory continues to have several impaired stream reaches, as defined by the New Mexico Environment Department. Laboratory industrial outfalls and dredge and fill activities are regulated to help minimize these impairments.
INTRODUCTION

Effluents (liquid discharges from industrial operations) containing radionuclides, inorganic chemicals, and organic chemicals were released into canyons around Los Alamos National Laboratory (LANL, or the Laboratory) during the early years of its operations. Treatments to reduce contaminants in effluents began in the 1950s. Effluent discharges at the Laboratory have been conducted under permits from regulatory agencies since 1978.

There are also natural and non-Laboratory but human-related sources of chemicals and radionuclides, such as the natural composition of rocks and soils, substances associated with trees burned during forest fires, atmospheric fallout of radionuclides and of chemicals such as polychlorinated biphenyls (PCBs), and releases from other developed areas on the Pajarito Plateau. All of the above sources contribute to the measured levels of chemicals and radionuclides in surface water and sediment across the plateau.

We monitor chemical and radionuclide levels in surface water and sediment in and around the Laboratory to (1) document the water quality in streams within and downstream of the Laboratory and (2) evaluate risks to human and ecosystem health. Sampling results are compared with New Mexico water quality standards, target action levels, radiological dose guidelines, and human and ecosystem health screening criteria.

The data presented in this chapter originate from three Laboratory programs:

- Annual environmental surveillance sampling (N3B 2019a, N3B 2020a)
- The annual Interim Facility-Wide Groundwater Monitoring Plan (N3B 2018, N3B 2019b), which includes sampling of springs and persistent surface water in streams
- Storm water runoff monitoring associated with the Individual Permit (Permit No. 0030759; the authorization to discharge [from solid waste management units and areas of concern] under the National Pollutant Discharge Elimination System) (N3B 2020b)

The legacy waste cleanup contractor Newport News Nuclear BWXT–Los Alamos (N3B) assumed responsibility for implementing the Laboratory’s surface water and sediment surveillance programs, groundwater protection program, and the Individual Permit in April 2018.

At the Laboratory, we consider any soil that is either suspended in water or that has been deposited by surface water flows as sediment. Many of our sediment samples are collected from dry stream channels or adjacent floodplains, and not from aquatic habitats.

STANDARDS, SCREENING LEVELS, AND DESIGNATED USES FOR STREAM REACHES

The New Mexico Water Quality Control Commission establishes surface water quality standards for New Mexico in Standards for Interstate and Intrastate Surface Waters, Title 20, Chapter 6, Part 4 of the New Mexico Administrative Code. The current standards were approved by the Environmental Protection Agency on March 2, 2017, and can be found online at https://www.env.nm.gov/surface-water-quality/2013-triennial-review/. We use the New Mexico Environment Department’s protocol for assessing attainment of surface water quality standards (New Mexico Environment Department 2019a).

Hardness-dependent aquatic life criteria for metals are calculated using water hardness values of concurrent samples where available, and 30 milligrams calcium carbonate per liter (mg CaCO₃/L) where
hardness values are not available (U.S. Environmental Protection Agency 2006a, New Mexico Water Quality Control Commission 2017).

U.S. Department of Energy (DOE) Order 458.1 Chg 3, *Radiation Protection of the Public and the Environment*, sets total dose limits for radioactivity released during Laboratory operations. Limits apply to members of the public, plants, and animals. There are no drinking water systems relying on surface water that deliver water to people on the Pajarito Plateau. Therefore, our radiological assessment of surface water looks at the potential exposures of aquatic organisms as well as animals living on land (collectively called “biota”). We compare radionuclide activities in surface water with the DOE biota concentration guides (DOE 2002, 2004) with site-specific modifications by McNaughton et al. (2013). Biota concentration guides for either aquatic, riparian, or terrestrial animals are used for evaluation, depending on how often surface water is present at each location being evaluated. Perennial reaches are screened using aquatic and riparian animal biota concentration guides; intermittent reaches are screened using aquatic, terrestrial, and riparian biota concentration guides; ephemeral reaches are screened using terrestrial animal biota concentration guides. Biota dose results are provided in Chapter 7.

We compare surface water results for gross alpha radioactivity and isotopes of radium with the New Mexico water quality standards. The gross alpha standard does not apply to source, special nuclear, or byproduct material regulated by DOE under the Atomic Energy Act of 1954. The gross alpha radioactivity data discussed in this chapter were not adjusted to remove these sources of radioactivity.

We compare surface water results from the Individual Permit site monitoring areas with the target action levels specified in the Individual Permit. Additional details for site monitoring area results are provided in the Individual Permit Annual Report (N3B 2020c).

State of New Mexico Assessments of Stream Reaches

The New Mexico Environment Department Surface Water Quality Bureau uses surface water sampling results to evaluate impairment of the state’s stream reaches under Section 303(d) of the Clean Water Act. They update the list of impaired stream reaches, including those on Laboratory property, every two years.

Under *Standards for Interstate and Intrastate Surface Waters*, Title 20, Chapter 6, Part 4 of the New Mexico Administrative Code, stream reaches within the Laboratory boundary are classified as perennial (having water throughout the year), or ephemeral and intermittent (having water for extended periods only at certain times of the year or having water briefly only in direct response to precipitation) (New Mexico Water Quality Control Commission 2017). Based on their type of stream flow and other characteristics, the stream reaches are assigned one or more of the following designated uses: cold water aquatic life, marginal warm water aquatic life, limited aquatic life, livestock watering, wildlife habitat, primary (human) contact, and secondary (human) contact.
Stream reaches within the Laboratory boundary are divided into assessment units. An assessment unit is considered impaired when one or more of the New Mexico surface water quality standards are not being met for one or more pollutants. The standards that are applied to each assessment unit depend on the designated use(s) of that assessment unit.

The locations of assessment units on and around the Laboratory are shown in Figure 6-1. The current status of each designated use (supported, not supported, or not assessed) for each assessment unit, and the identified cause of impairment, if any, are listed in Table 6-1.

Sediment Screening Levels

We compare levels of chemicals in sediment with the New Mexico Environment Department’s risk-based soil screening levels (New Mexico Environment Department 2019b) and levels of radionuclides with the Laboratory’s risk-based screening action levels (LANL 2015a). If there are no New Mexico soil screening levels for a particular chemical, the U.S. Environmental Protection Agency’s regional screening levels are used (U.S. Environmental Protection Agency 2016). Soil screening levels for inorganic and organic chemicals and screening action levels for radionuclides are levels considered safe for industrial, construction worker, or residential exposure scenarios. If concentrations of substances are below screening action levels or soil screening levels, then adverse human health effects are highly unlikely. In addition, we use sediment background values from Ryti et al. (1998) for reference. (Note: The New Mexico surface water quality standards only address total PCBs, while the soil screening levels address individual PCB congeners, but not total PCBs.)

For evaluation of biota, we compare levels of radionuclides in sediment with the DOE biota concentration guides (DOE 2002, 2004) with site-specific modifications by McNaughton et al. (2013). Biota concentration guides for riparian and terrestrial animals are used for evaluation.
Figure 6-1. Stream reaches and watersheds within and around the Laboratory. Map shows the classifications of streams from *Standards for Interstate and Intrastate Surface Waters*, Title 20, Chapter 6, Part 4 of the New Mexico Administrative Code (20.6.4 NMAC; New Mexico Water Quality Control Commission 2017).
This page intentionally blank.
Table 6-1. LANL Assessment Units, Impairment Cause, and Designated Use(s) that Are Supported, Not Supported, or Not Assessed

<table>
<thead>
<tr>
<th>Assessment Unit Name</th>
<th>Impairment Cause</th>
<th>Designated Use Supported</th>
<th>Designated Use Not Supported</th>
<th>Designated Use Not Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid Canyon (Pueblo Canyon to headwaters)</td>
<td>Gross alpha¹, aluminum, PCBs², copper</td>
<td>None</td>
<td>Wildlife habitat, livestock watering, marginal warm water aquatic life</td>
<td>Primary contact</td>
</tr>
<tr>
<td>Ancho Canyon (North Fork to headwaters)</td>
<td>PCBs</td>
<td>Wildlife habitat</td>
<td>Limited aquatic life</td>
<td>Secondary contact, livestock watering</td>
</tr>
<tr>
<td>Ancho Canyon (Rio Grande to North Fork Ancho)</td>
<td>PCBs, mercury</td>
<td>Livestock watering</td>
<td>Limited aquatic life, wildlife habitat</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Arroyo de la Delfe (Pajarito Canyon to headwaters)</td>
<td>Copper, PCBs, aluminum, gross alpha</td>
<td>None</td>
<td>Limited aquatic life, livestock watering, wildlife habitat</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Cañada del Buey (within LANL)</td>
<td>PCBs, gross alpha</td>
<td>None</td>
<td>Limited aquatic life, livestock watering</td>
<td>Secondary contact, wildlife habitat</td>
</tr>
<tr>
<td>Cañon de Valle (below LANL gage E256)</td>
<td>Gross alpha</td>
<td>Wildlife habitat, limited aquatic life</td>
<td>Livestock watering</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Cañon de Valle (LANL gage E256 to Burning Ground Spring)</td>
<td>PCBs</td>
<td>Livestock watering</td>
<td>Cold water aquatic life, wildlife habitat</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Cañon de Valle (upper LANL boundary to headwaters)</td>
<td>Gross alpha, PCBs</td>
<td>Wildlife habitat</td>
<td>Marginal warm water aquatic life, livestock watering</td>
<td>Primary contact</td>
</tr>
<tr>
<td>Cañon de Valle (within LANL above Burning Ground Spring)</td>
<td>Not assessed</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Livestock watering, limited aquatic life, wildlife habitat, secondary contact</td>
</tr>
<tr>
<td>Chaquehui Canyon (within LANL)</td>
<td>PCBs</td>
<td>Wildlife habitat, livestock watering</td>
<td>Limited aquatic life</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>DP Canyon (Grade Control to upper LANL boundary)</td>
<td>Copper, PCBs, aluminum, gross alpha</td>
<td>None</td>
<td>Livestock watering, limited aquatic life, wildlife habitat</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>DP Canyon (Los Alamos Canyon to grade control)</td>
<td>PCBs, aluminum, gross alpha</td>
<td>None</td>
<td>Livestock watering, limited aquatic life, wildlife habitat</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Fence Canyon (above Potrillo Canyon)</td>
<td>Not assessed</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Livestock watering, limited aquatic life, wildlife habitat, secondary contact</td>
</tr>
<tr>
<td>Graduation Canyon (Pueblo Canyon to headwaters)</td>
<td>Copper, PCBs</td>
<td>Livestock watering</td>
<td>Wildlife habitat, marginal warm water aquatic life</td>
<td>Primary contact</td>
</tr>
<tr>
<td>Assessment Unit Name</td>
<td>Impairment Cause</td>
<td>Designated Use Supported</td>
<td>Designated Use Not Supported</td>
<td>Designated Use Not Assessed</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Indio Canyon (above Water Canyon)</td>
<td>Not assessed</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Livestock watering, limited aquatic life, wildlife habitat, secondary contact</td>
</tr>
<tr>
<td>Kwage Canyon (Pueblo Canyon to headwaters)</td>
<td>Not assessed</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Primary contact, wildlife habitat, livestock watering, marginal warm water aquatic life</td>
</tr>
<tr>
<td>Los Alamos Canyon (DP Canyon to upper LANL boundary)</td>
<td>PCBs, cyanide, selenium, gross alpha, mercury</td>
<td>None</td>
<td>Livestock watering, limited aquatic life, wildlife habitat</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Los Alamos Canyon (NM-4 to DP Canyon)</td>
<td>Aluminum, PCBs, cyanide, radium, gross alpha, mercury</td>
<td>None</td>
<td>Livestock watering, limited aquatic life, wildlife habitat</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Mortandad Canyon (within LANL)</td>
<td>Copper, PCBs, gross alpha, mercury</td>
<td>None</td>
<td>Livestock watering, limited aquatic life, wildlife habitat</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>North Fork Ancho Canyon (Ancho Canyon to headwaters)</td>
<td>Gross alpha, PCBs</td>
<td>None</td>
<td>Livestock watering, limited aquatic life, wildlife habitat</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Pajarito Canyon (Arroyo de La Delfe to Starmers Spring)</td>
<td>None</td>
<td>Livestock watering, cold water aquatic life wildlife habitat</td>
<td>None</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Pajarito Canyon (lower LANL boundary to Twomile Canyon)</td>
<td>Aluminum, PCBs, copper, gross alpha, cyanide</td>
<td>Wildlife habitat, limited aquatic life livestock watering</td>
<td>None</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Pajarito Canyon (Twomile Canyon to Arroyo de La Delfe)</td>
<td>PCBs, silver, copper, gross alpha</td>
<td>Wildlife habitat</td>
<td>Livestock watering, limited aquatic life</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Pajarito Canyon (upper LANL boundary to headwaters)</td>
<td>Gross alpha, cyanide, PCBs, aluminum, mercury</td>
<td>None</td>
<td>Warm water aquatic life, livestock watering, wildlife habitat</td>
<td>Primary contact</td>
</tr>
<tr>
<td>Pajarito Canyon (within LANL above Starmers Gulch)</td>
<td>Aluminum, gross alpha</td>
<td>Wildlife habitat</td>
<td>Livestock watering, limited aquatic life</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Potrillo Canyon (above Water Canyon)</td>
<td>Gross alpha</td>
<td>Limited aquatic life, wildlife habitat</td>
<td>Livestock watering</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Pueblo Canyon (Acid Canyon to headwaters)</td>
<td>Gross alpha, PCBs, copper, aluminum</td>
<td>None</td>
<td>Marginal warm water aquatic life, livestock watering, wildlife habitat</td>
<td>Primary contact</td>
</tr>
<tr>
<td>Assessment Unit Name</td>
<td>Impairment Cause</td>
<td>Designated Use Supported</td>
<td>Designated Use Not Supported</td>
<td>Designated Use Not Assessed</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------------</td>
<td>-----------------------------------</td>
<td>--</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Pueblo Canyon (Los Alamos Canyon to Los Alamos Wastewater Treatment Plant)</td>
<td>Gross alpha, aluminum, PCBs, selenium</td>
<td>None</td>
<td>Marginal warm water aquatic life, livestock watering, wildlife habitat</td>
<td>Primary contact</td>
</tr>
<tr>
<td>Pueblo Canyon (Los Alamos Wastewater Treatment Plant to Acid Canyon)</td>
<td>Gross alpha, PCBs</td>
<td>None</td>
<td>Marginal warm water aquatic life, livestock watering, wildlife habitat</td>
<td>Primary contact</td>
</tr>
<tr>
<td>Sandia Canyon (Sigma Canyon to National Pollutant Discharge Elimination System Outfall 001)</td>
<td>PCBs, aluminum, copper, temperature</td>
<td>Livestock watering</td>
<td>Wildlife habitat, cold water aquatic life</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Sandia Canyon (within LANL below Sigma Canyon)</td>
<td>PCBs, aluminum, gross alpha, mercury</td>
<td>None</td>
<td>Livestock watering, limited aquatic life, wildlife habitat</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>South Fork Acid Canyon (Acid Canyon to headwaters)</td>
<td>Gross alpha, copper, PCBs</td>
<td>None</td>
<td>Marginal warm water aquatic life, livestock watering, wildlife habitat</td>
<td>Primary contact</td>
</tr>
<tr>
<td>Ten Site Canyon (Mortandad Canyon to headwaters)</td>
<td>PCBs, gross alpha</td>
<td>None</td>
<td>Livestock watering, limited aquatic life, wildlife habitat</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Threemile Canyon (Pajarito Canyon to headwaters)</td>
<td>Gross alpha</td>
<td>Limited aquatic life, wildlife habitat</td>
<td>Livestock watering</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Twomile Canyon (Pajarito to headwaters)</td>
<td>PCBs, aluminum, copper, gross alpha</td>
<td>None</td>
<td>Livestock watering, limited aquatic life, wildlife habitat</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Walnut Canyon (Pueblo Canyon to headwaters)</td>
<td>PCBs, copper</td>
<td>Livestock watering, wildlife habitat</td>
<td>Marginal warm water aquatic life</td>
<td>Primary contact</td>
</tr>
<tr>
<td>Water Canyon (Area-A Canyon to New Mexico 501)</td>
<td>None</td>
<td>Cold water aquatic life, livestock watering, wildlife habitat</td>
<td>None</td>
<td>Secondary contact</td>
</tr>
<tr>
<td>Water Canyon (within LANL above New Mexico 501)</td>
<td>Not assessed</td>
<td>Not applicable</td>
<td>Not applicable</td>
<td>Livestock watering, limited aquatic life, wildlife habitat, secondary contact</td>
</tr>
<tr>
<td>Water Canyon (within LANL below Area-A Canyon)</td>
<td>PCBs, aluminum, gross alpha, mercury</td>
<td>None</td>
<td>Livestock watering, limited aquatic life, wildlife habitat</td>
<td>Secondary contact</td>
</tr>
</tbody>
</table>

1Gross alpha levels in surface water samples are currently not adjusted to remove sources of radioactivity from source, special nuclear, or byproduct material regulated by DOE under the Atomic Energy Act of 1954.
2PCBs are total PCBs in the water column.
HYDROLOGIC SETTING

Laboratory lands contain all or parts of seven watersheds that drain into the Rio Grande basin (Figure 6-1). Listed from north to south, the major canyons for these watersheds are Los Alamos, Sandia, Mortandad, Pajarito, Water, Ancho, and Chaquehui Canyons. Each of these watersheds includes tributary canyons of various sizes. Los Alamos, Pajarito, and Water Canyons have their headwaters west of the Laboratory in the eastern Jemez Mountains, mostly within the Santa Fe National Forest. The remainder of the watersheds have their headwaters on the Pajarito Plateau. Only the Ancho Canyon watershed is located entirely on Laboratory land.

In 2019, snowmelt runoff crossed the downstream (eastern) boundary of the Laboratory at gaging stations in Los Alamos, Pajarito, Pueblo, and Water Canyons and Cañada del Buey. Total snowmelt runoff for 2019 measured at these stations is estimated at 460 acre-feet, with most of the runoff occurring in Los Alamos and Pueblo Canyons. Total storm water runoff for June to October 2019 measured at the downstream Laboratory boundary is estimated at 44 acre-feet. Most of this runoff occurred in Los Alamos and Water Canyons; minimal runoff (less than 1.5 acre-feet) occurred in Pueblo, Sandia, Mortandad, Pajarito, Ancho, and Chaquehui Canyons, and Cañada del Buey; and no runoff occurred in Potrillo Canyon or Fence Canyon. No effluent from the Los Alamos County Treatment Facility reached the gaging station in lower Pueblo Canyon during storm events in 2019. Figure 6-2 shows the precipitation and storm water runoff volume for the Laboratory for the monsoonal period of June through October during the years 1995 to 2019.
Figure 6-2. Total June–October precipitation from 1995 to 2019 averaged across the Laboratory’s meteorological tower network (Technical Area 06, Technical Area 49, Technical Area 53, Technical Area 54, and North Community), and estimated June–October storm water runoff volume in Laboratory canyons from 1995 to 2019. Dashed line indicates data with potential quality issues.

SURFACE WATER AND SEDIMENT SAMPLING

Surface Water Sampling Locations and Methods

We sample surface water in all major canyons and tributaries on current or former Laboratory lands. This includes an emphasis on monitoring close to and downstream of potential sources of Laboratory-released substances, including monitoring at the downstream Laboratory boundaries and east of New Mexico State Road 4.

We currently maintain 37 stream gaging stations on and near the Laboratory, all of which are equipped with automated samplers that activate at the start of storm water runoff events. Storm water samples are also collected at eight additional stream channel locations that do not have active gaging stations. The number of gaging stations and stream channel sampling locations remains fairly constant over time. However, not all gaging stations or channel sampling locations experience storm water flow in any given year, so the number of locations with samples varies from year to year. The sampling locations are chosen to monitor surface water flow onto and off of Laboratory and former Laboratory lands and at the confluence of canyons.
The automated samplers at gaging stations are programmed to start collecting water ten minutes after the peak flow during a runoff event, referred to as “Peak + 10.” The year 2019 was the ninth year that the Peak + 10 sampling method was employed at the gaging stations. This method was implemented based on comments by the New Mexico Environment Department that results from water samples collected before the peak of the storm flow were highly variable and therefore not ideal for monitoring contaminant and sediment transport. Programming the automated samplers to sample 10 minutes after the peak ensures that samples are not collected on the rising limb of the hydrograph. Previously, from 2004–2010, samples were collected right at the peak of the runoff event. As a result, current storm water sampling results are not directly comparable with data collected prior to the 2011 monitoring season.

To meet monitoring requirements under the Individual Permit, we have also installed samplers in 250 site monitoring areas to sample storm water runoff directly from 405 solid waste management units and areas of concern. These samplers are not kept on during months with freezing temperatures. Because rain storms on the Pajarito Plateau are frequently very localized and not all rainfall events produce storm water runoff, not all active Individual Permit sampling locations collect samples each year.

Water discharged from springs is a type of base flow (the portion of stream flow that is not runoff). We collected grab samples of surface water below springs that discharge groundwater at locations identified in the “Interim Facility-Wide Groundwater Monitoring Plan for the 2019 Monitoring Year, October 2018–September 2019” and the “Interim Facility-Wide Groundwater Monitoring Plan for the 2020 Monitoring Year, October 2019–September 2020” (N3B 2018, N3B 2019b).

Figure 6-3 shows locations where samples were collected in 2019 for storm water at stream gaging stations and at sediment-detention basins and for base flow below springs, and Figure 6-4 shows Individual Permit site monitoring areas where compliance samples were collected in 2019.
Figure 6-3. Locations sampled for storm water in 2019 at stream gaging stations and at sediment-d Detention basins in upper Los Alamos Canyon and for base flow below springs.
Figure 6-4. Individual Permit (IP) site monitoring areas where automated samplers collected compliance storm water samples in 2019

Sediment Sampling Locations and Methods

Figure 6-5 shows locations sampled for sediment in 2019 as part of the annual environmental surveillance program. Sediment samples were collected at a depth of between 0 and 6 inches, depending on the thickness of the uppermost sediment layer. We collected samples from stream channels and floodplains where new sediment was deposited during 2019. For streams with flowing water, sediment samples were collected near the edge of the main channel adjacent to, but not in, the water. During 2019, storm water runoff flowed in every canyon on Laboratory property except for Fence Canyon and Potrillo Canyon, both in the Water Canyon watershed; therefore, sediment samples were collected from most watersheds.
CHAPTER 6 – WATERSHED QUALITY

Figure 6-5. Locations sampled in 2019 for sediment as part of the annual environmental surveillance program.

Note: MDA = Material disposal area; RG = Rio Grande; BLW = below; @ = at; LA = Los Alamos Canyon; P = Pueblo Canyon; AC = Acid Canyon; ACS = Acid Canyon South, S = Sandia Canyon; WA = Water Canyon; CDV = Cañon de Valle; ABV = above; CH or CHQ = Chaquehui Canyon; CdB = Cañada del Buey; PA = Pajarito Canyon; M or Mort = Mortandad Canyon; MCW = Mortandad Canyon West; PO = Potrillo Canyon; BKG = background; TW = Twomile Canyon; I = Indio Canyon

Los Alamos National Laboratory | 2019 Annual Site Environmental Report | 6-17
Sampling Results

Table 6-2 summarizes inorganic chemical results for 2019 storm water and base flow samples and Table 6-3 summarizes organic chemical and radionuclide results for 2019 storm water and base flow samples. Table 6-4 summarizes chemical results for 2019 sediment samples at locations that exceeded screening levels for at least one chemical. The surface water monitoring data for 2019 and previous years are available through the Intellus New Mexico website (https://intellusnm.com).

Results from compliance sampling for the Individual Permit are not presented in the tables below, but are discussed in the text and included in the following figures. Tables of the Individual Permit sampling results for 2019 are available in the Storm Water Individual Permit Annual Report (N3B 2020c). Tests are not performed for every substance in every Individual Permit sample; the analyses that are requested vary depending on the chemicals or radionuclides present in the solid waste management units and areas of concern within a site monitoring area.
Table 6-2. 2019 Storm Water and Base Flow Results for Inorganic Chemicals

<table>
<thead>
<tr>
<th>Location Description</th>
<th>Stream Gage Number</th>
<th>Total Aluminiun</th>
<th>Dissolved Copper</th>
<th>Dissolved Lead</th>
<th>Total Selenium</th>
<th>Dissolved Zinc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Analyses</td>
<td>Detects</td>
<td>Exceedances</td>
<td>Analyses</td>
<td>Detects</td>
</tr>
<tr>
<td>Between E252 and Water at Beta</td>
<td>n/a</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Canon de Valle below MDA P</td>
<td>E256</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CO111041</td>
<td>n/a</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DP above TA-21</td>
<td>E038</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DP below grade control structure</td>
<td>E026</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>E059.5 Pueblo below LAC WWTF</td>
<td>E059.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Los Alamos above low-head weir</td>
<td>E042.1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Los Alamos below Ice Rink</td>
<td>E026</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Los Alamos below low-head weir</td>
<td>E050.1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Mortandad above Ten Site</td>
<td>E201</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mortandad at Rio Grande</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Mortandad below Effluent Canyon</td>
<td>E200</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Pajarito below S-N transect of East Anchor Basin</td>
<td>n/a</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Pajarito above Threemile</td>
<td>E245.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pajarito at Rio Grande</td>
<td>n/a</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rio Grande at Frijoles</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Rio Grande at Otowi Bridge</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sandia above Firing Range</td>
<td>E124</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sandia below Wetlands</td>
<td>E123</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Sandia below Wetlands</td>
<td>E123</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Sandia left fork at Asphalt Plant</td>
<td>E122</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>South Fork of Sandia at E122</td>
<td>E122</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Sandia right fork at Power Plant</td>
<td>E121</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sandia right fork at Power Plant</td>
<td>E121</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Ten Site above Mortandad</td>
<td>E201.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

*Exceedances are calculated as a percentage of the total number of analyses.
CHAPTER 6 – WATERSHED QUALITY

<table>
<thead>
<tr>
<th>Location Description</th>
<th>Stream Gage Number</th>
<th>Total Aluminum<sup>1</sup></th>
<th>Dissolved Copper</th>
<th>Dissolved Lead</th>
<th>Dissolved Selenium</th>
<th>Dissolved Zinc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Analyses<sup>2</sup></td>
<td>Detects<sup>3</sup></td>
<td>Exceedances<sup>4</sup></td>
<td>Analyses</td>
<td>Detects</td>
</tr>
<tr>
<td>Twomile Canyon below TA-59</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Water at Beta</td>
<td>n/a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

¹Unfiltered aluminum is screened for base flow samples and aluminum filtered to 10 µm is screened for storm water samples.

²Analyses are the number of samples analyzed for that constituent.

³Detects are the number of samples in which that constituent was detected.

⁴Exceedances are the number of results that were detected above the screening level.

Gray highlighting indicates base flow sampling locations, whereas no gray highlighting indicates storm water sampling locations.
Table 6-3. 2019 Storm Water and Base Flow Results for Organic Chemicals and Radionuclides

<table>
<thead>
<tr>
<th>Location Description</th>
<th>Stream Gage Number</th>
<th>Total PCB</th>
<th>Gross Alpha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analyses¹</td>
<td>Detects²</td>
<td>Exceedances³</td>
</tr>
<tr>
<td>CDB above SR-4</td>
<td>E229.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CO111041</td>
<td>n/a</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>DP above Los Alamos Canyon</td>
<td>E040</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DP above TA-21</td>
<td>E038</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DP below grade control structure</td>
<td>E039.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>E059.5 Pueblo below LAC WWTF</td>
<td>E059.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Los Alamos above low-head weir</td>
<td>E042.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Los Alamos below Ice Rink</td>
<td>E026</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Los Alamos below low-head weir</td>
<td>E050.1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Mortandad above Ten Site</td>
<td>E201</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mortandad at Rio Grande</td>
<td>n/a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mortandad below Effluent Canyon</td>
<td>E200</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Pajarito above Threemile</td>
<td>E245.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rio Grande at Otowi Bridge</td>
<td>n/a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sandia above Firing Range</td>
<td>E124</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sandia below Wetlands</td>
<td>E123</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Sandia below Wetlands</td>
<td></td>
<td></td>
<td>E123</td>
</tr>
<tr>
<td>Sandia left fork at Asphalt Plant</td>
<td>E122</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>South Fork of Sandia at E122</td>
<td>E122</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sandia right fork at Power Plant</td>
<td>E121</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sandia right fork at Power Plant</td>
<td>E121</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ten Site above Mortandad</td>
<td>E201.5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Twomile Canyon below TA-59</td>
<td>n/a</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

¹Analyses are the number of samples analyzed for that constituent.
²Detects are the number of samples in which that constituent was detected.
³Exceedances are the number of results that were detected above the screening level.

Gray highlighting indicates base flow sampling locations, whereas no gray highlighting indicates storm water sampling locations.
Table 6-4. 2019 Sediment Locations Where at Least One Sample Result Exceeded Screening Levels

<table>
<thead>
<tr>
<th>Location ID</th>
<th>Canyon</th>
<th>Reach Name</th>
<th>Iron</th>
<th>Manganese</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analyzes¹</td>
<td>Detects²</td>
</tr>
<tr>
<td>CH-61326</td>
<td>Chaquehui</td>
<td>Chaquehui at Rio Grande</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LA-61586</td>
<td>Los Alamos</td>
<td>LA below Weir</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PA-61534</td>
<td>Pajarito</td>
<td>PA-4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PA-61535</td>
<td>Pajarito</td>
<td>PA-4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PU-61537</td>
<td>Pueblo</td>
<td>P-4E/P-4C</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>SA-61629</td>
<td>Sandia</td>
<td>S-6W</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WA-61546</td>
<td>Water</td>
<td>WA-3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WA-61550</td>
<td>Water</td>
<td>Water at Rio Grande</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WR-61528</td>
<td>White Rock</td>
<td>Rio Grande below Frijoles</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WR-61522</td>
<td>White Rock</td>
<td>Rio Grande below Mortandad</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WR-61521</td>
<td>White Rock</td>
<td>Rio Grande below Sandia</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>WR-61524</td>
<td>White Rock</td>
<td>Rio Grande below Water</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

¹Analyses are the number of samples analyzed for that constituent.
²Detects are the number of samples in which that constituent was detected.
³Exceedances are the number of results that were detected above the construction worker non-cancer screening level except where noted.
⁴Exceeds residential soil non-cancer screening level.

Discussion of Sampling Results

The screening levels provide a high level of confidence in determining a low probability of risk to human health. They are not designed or intended to provide definitive estimates of actual risk and are not based on site-specific information (U.S. Environmental Protection Agency 2001). For example, onsite data are compared with residential screening levels, though there are no residences nearby. We evaluate human health effects from exposure to storm water in Chapter 8, Public Dose and Risk Assessment.

Sediment data presented in this report are used to determine if the following conceptual model is still accurate: the process of sediment transport by storm water runoff observed in Laboratory canyons generally results in the same or lower levels of LANL-released substances in new sediment deposits than previously existed in a given reach. The results from 2019 verify this conceptual model and support the idea that the risk assessments presented in the canyons investigation reports (LANL 2004, 2005, 2006, 2009a, 2009b, 2009c, 2009d, 2011a, 2011b, 2011c) represent an upper bound of potential human health risks in the canyons for the foreseeable future.

For sediment samples collected in 2019, there were minimal exceedances of screening levels. Out of 101 sediment samples collected, only 12 samples had any exceedances. Construction worker
non-cancer soil screening levels were exceeded for manganese in twelve sediment samples. Exceedances primarily occurred in samples collected near the Rio Grande and two of these values were below the sediment background value for manganese (LANL 1998). One of the samples with a manganese exceedance, from Pueblo Canyon, also had an iron exceedance of the residential non-cancer soil screening level.

Table 6-5 provides a summary of all storm water and base flow sampling locations that had exceedances in 2019. Exceedances for each analyte are categorized by applicable New Mexico water quality standards. The percent of locations exceeding is also included.

Table 6-5. Number of Locations where New Mexico Water Quality Standards were Exceeded for Storm Water or Base Flow Results in 2019 for Constituents with at Least One Exceedance

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Livestock Watering</th>
<th>Wildlife Habitat</th>
<th>Acute Aquatic Life</th>
<th>Chronic Aquatic Life</th>
<th>Human Health-Organism Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Aluminum</td>
<td>—</td>
<td>—</td>
<td>19 (79%)</td>
<td>6 (25%)</td>
<td>—</td>
</tr>
<tr>
<td>Dissolved Copper</td>
<td>—</td>
<td>—</td>
<td>9 (38%)</td>
<td>4 (17%)</td>
<td>—</td>
</tr>
<tr>
<td>Dissolved Lead</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>4 (17%)</td>
<td>—</td>
</tr>
<tr>
<td>Total Selenium</td>
<td>—</td>
<td>5 (21%)</td>
<td>1 (4%)</td>
<td>5 (21%)</td>
<td>—</td>
</tr>
<tr>
<td>Dissolved Zinc</td>
<td>—</td>
<td>—</td>
<td>3 (13%)</td>
<td>3 (13%)</td>
<td>—</td>
</tr>
<tr>
<td>Gross alpha</td>
<td>13 (68%)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Total PCB</td>
<td>—</td>
<td>15 (94%)</td>
<td>1 (6%)</td>
<td>15 (94%)</td>
<td>16 (100%)</td>
</tr>
</tbody>
</table>

*A dash indicates there is no standard for this chemical or radionuclide in this category.

Note: The percentage in parentheses represents the percent of locations that have an exceedance for that analyte.

Constituents Related to Background Sources

Some chemicals and radionuclides may come from both naturally occurring sources and human-derived sources. Chemicals that are mainly or completely naturally occurring are discussed below, but results are not presented in figures. Chemicals from human sources that exceeded screening levels more than once in 2019 at a particular location for water samples are shown in Figures 6-6 through 6-11. Because of the smaller number of samples, the sediment data are not presented in figures, but exceedances are reported in Table 6-4.

In Figures 6-6 through 6-11, the points in the top panel show the locations of the stream gaging stations, sediment detention basins, base flow, and Individual Permit sites where surface water samples have been collected. For each constituent, the color of a point corresponds to the percentile in which the median concentration at that location falls. The median values and the percentiles were calculated from data collected from 2011 through 2019. The percentiles were calculated from a data set of the median values of the constituent at each sampled location in the watershed. The range in concentrations represented by each percentile is provided at the top of the figure. The plots in the bottom panel(s) show all results in the watershed for the constituent of interest for each year, with different colors for Individual Permit samples and gage samples.

Aluminum: Storm water samples collected on the Pajarito Plateau in 2019 commonly contained aluminum concentrations above New Mexico water quality standards. However, most or all of this aluminum is likely naturally occurring (Reneau et al. 2010, Ryan et al. 2019). Aluminum is a natural component of soil and Bandelier Tuff, and it is not known to be derived from Laboratory operations in
any significant quantity. In 2019, total aluminum concentrations in storm water exceeded the acute aquatic life standard at 19 sampling locations (79 percent of locations) and the chronic aquatic life standard at 6 sampling locations (25 percent of locations). There were three exceedances of the target action level for total aluminum concentrations in 20 Individual Permit–related runoff samples in 2019. Fourteen of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for aluminum (Table 6-1). However, the New Mexico Environment Department Surface Water Quality Bureau has stated that “the large number of exceedances” for aluminum in surface water on the Pajarito Plateau “may reflect natural sources associated with the geology of the region,” and that aluminum also exceeds 658 micrograms per liter (the acute aquatic life standard for a hardness of 30 mg CaCO₃/L) in other parts of the Jemez Mountains area (New Mexico Environment Department 2009).

In 2019, no sediment samples exceeded soil screening levels for aluminum.

Arsenic: Arsenic has both natural and human-derived sources. Coal-fired power plants emit gaseous arsenic. While the Four Corners Generating Station coal-fired power plant has contributed to arsenic contamination, the Laboratory also operated coal-fired power plants historically. Arsenic is also found naturally in the local volcanic rocks. In 2019, none of the filtered gaging station storm water or base flow results exceeded the surface water quality standards for arsenic. One of the 20 Individual Permit-related samples exceeded the target action level for arsenic in 2019. None of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for arsenic (Table 6-1).

In 2019, no sediment samples exceeded soil screening levels for arsenic.

Copper: Copper is naturally occurring and it is also associated with explosives firing sites, forest fires, and developed areas, such as buildings and parking lots. Copper sources in developed landscapes include brake pad abrasion and building materials, such as flashing, plumbing pipes, and electrical components (TDC Environmental 2004, Göbel et al. 2007). In 2019, copper concentrations in filtered storm water were detected above the acute aquatic life standard at 9 sampling locations (38% of locations) and above the chronic aquatic life standard at 4 sampling locations (17% of locations).

Historically, every watershed across the Laboratory has recorded elevated copper concentrations in storm water at some time, including all of the Laboratory’s upstream boundary gaging stations. Twelve of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for copper (Table 6-1). Since the 2006 implementation of the Individual Permit, every watershed has had a target action level exceedance for copper in Individual Permit–related runoff samples. In 2019, there were 6 exceedances of the target action level for filtered copper concentrations in 20 Individual Permit-related runoff samples. Figures 6-6 and 6-7 show copper concentrations in filtered storm water and base flow for Los Alamos/Pueblo and Sandia/Mortandad Canyons. Concentrations measured in 2019 were similar to those measured in previous years.

In 2019, no sediment samples exceeded soil screening levels for copper.
Figure 6-6. Los Alamos Canyon copper concentrations in filtered storm water from Individual Permit samplers and gaging stations and base flow from 2011–2019. Top panel: median storm water copper values for each sampling location from 2011–2019. Bottom panels: dissolved copper concentrations from Individual Permit and gage station samples from 2011 and 2019.
Figure 6-7. Sandia Canyon and Mortandad Canyon watershed copper concentrations in filtered storm water from Individual Permit samplers and gaging stations and base flow from 2011 to 2019. Top panel: median storm water copper values for each sampling location between 2011 and 2019. Bottom panels: dissolved copper concentrations from Individual Permit and gage station samples from 2011 and 2019.
Lead: Lead is associated with developed areas, such as buildings and parking lots (Göbel et al. 2007). The major lead sources in developed landscapes are lead-based paints, building sidings, and the operation of automobiles (Davis and Burns 1999). Lead concentrations in filtered storm water in 2019 were detected above the chronic aquatic life standard at four sampling locations (17% of locations). None of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for lead (Table 6-1). There were no exceedances of the target action level for filtered lead concentrations in the 20 Individual Permit-related runoff samples in 2019. Figure 6-8 shows lead concentrations in filtered storm water and base flow in Sandia and Mortandad Canyons. Concentrations measured 2019 were similar to those measured in previous years.

In 2019, no sediment samples exceeded soil screening levels for lead.

Manganese: Manganese is naturally occurring on the Pajarito Plateau. Laboratory operations have not generated or released significant quantities of manganese. Dissolved manganese concentrations were elevated following the Cerro Grande fire and then decreased quickly in subsequent years (Gallaher and Koch 2004, 2005). Filtered manganese concentrations were not detected above the acute or chronic aquatic life standards in storm water samples collected in 2019. None of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for manganese (Table 6-1).

In 2019, manganese concentrations in sediment exceeded the construction worker non-cancer soil screening level in 12 samples.

Selenium: Selenium is naturally occurring on the Pajarito Plateau. Laboratory operations have not generated or released significant quantities of selenium. Total selenium concentrations were elevated following the Cerro Grande fire and then decreased quickly in subsequent years (Gallaher and Koch 2004, 2005). In 2019, total selenium concentrations in storm water were detected above the wildlife habitat standard at 5 sampling locations (21% of locations), above the acute aquatic life standard at 1 sampling location (4% of locations), and above the chronic aquatic life standard at 5 sampling locations (21% of locations). Total selenium concentrations exceeded the Individual Permit target action level in 6 of the 20 Individual Permit-related storm water samples collected in 2019. Two of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for selenium (Table 6-1).

In 2019, no sediment samples exceeded soil screening levels for selenium.
Note: Two Individual Permit samples from 2017 in the Sandia watershed are not shown in the bottom panel due to the scale of the plot (concentrations of 129 µg/L and 36.5 µg/L).

Figure 6-8. Sandia Canyon watershed lead concentrations in filtered storm water from Individual Permit samplers, gaging stations, and base flow from 2011–2019. Top panel: median storm water lead values for each sampling location from 2011–2019. Bottom panels: dissolved lead concentrations of Individual Permit and gage station samples from 2011–2019.
Zinc: While naturally occurring, zinc can also be associated with developed areas. Zinc sources include automobile tires, galvanized materials, motor oil, and hydraulic fluid (Rose et al. 2001, Washington State Department of Ecology 2006, Councell et al. 2004). In 2019, filtered zinc concentrations in storm water samples were detected above the acute aquatic life standard at three sampling locations (13% of locations) and above the chronic aquatic life standard at three sampling locations (13%). None of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for zinc (Table 6-1). Filtered zinc concentrations exceeded the Individual Permit target action level in two of the 20 Individual Permit-related storm water samples collected in 2019. Figure 6-9 shows zinc concentrations in filtered storm water and base flow for Sandia and Mortandad Canyons. The scatter plots in the lower two panels of Figure 6-10 show that zinc concentrations were generally higher in Sandia Canyon in 2019 compared with the previous 2 years, although still within range of what has been observed in the past.

In 2019, no sediment samples exceeded soil screening levels for zinc.
Figure 6-9. Sandia Canyon watershed zinc concentrations in filtered storm water from Individual Permit samplers and gaging stations and base flow from 2011 to 2019. Top panel: median storm water zinc values for each sampling location between 2011 and 2019. Bottom panels: dissolved zinc concentrations from Individual Permit and gage station samples from 2011 to 2019.
Gross Alpha: The gross alpha activity is the sum of the radioactivity from alpha particle emissions from radioactive materials. Alpha particles are released by many naturally occurring radionuclides, such as isotopes of radium, thorium, and uranium, and their decay products. In 2019, 13 sampling locations (68% of locations) had gross alpha activities above the livestock watering standard. In 2011, 2012, and 2013, the highest gross alpha activities in storm water were measured in samples containing ash and sediment from the 2011 Las Conchas fire. Also, gross alpha activities were particularly high in runoff samples from the large September 2013 flood event. For sampling under the Individual Permit in 2019, gross alpha activity was above the target action level in 19 of 20 samples. Twenty-five of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for gross alpha radioactivity (Table 6-1). However, the analytical results from 2019 support earlier conclusions that the majority of the alpha radioactivity in storm water on the Pajarito Plateau is from the decay of naturally occurring isotopes in sediment and soil and that Laboratory impacts are relatively small (for example, see Gallaher 2007).

Sediment is not analyzed for gross alpha levels because sediment sampling is targeted to specific radionuclides of concern at a particular location.

Constituents Related to Los Alamos National Laboratory Operations

Several constituents were measured in storm water and sediment that were known to be released during historical Laboratory operations. The nature and extent of the constituents in sediment are described in detail in the canyons investigation reports referenced in the Discussion of Sampling Results section.

The following discussion describes the occurrences of key constituents in 2019 storm water and sediment samples. Results for constituents that exceeded screening levels or standards more than once in 2019 at a particular sample location for storm water and base flow are shown in the figures associated with each chemical below.

Cadmium: Cadmium is associated with combustion of fossil fuel; industrial use such as refinement for nickel-cadmium batteries, metal plating, pigments, and plastics; and activities such as sewage sludge disposal and application of phosphate fertilizers (Agency for Toxic Substances and Disease Registry 2012). In 2019, there were no exceedances observed for filtered storm water samples or base flow samples. There were no exceedances of the target action level for filtered cadmium concentrations in the 20 Individual Permit–related runoff samples in 2019. None of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for cadmium (Table 6-1).

In 2019, no sediment results exceeded soil screening levels for cadmium.

Cesium-137: Cesium-137 is a radionuclide that is a byproduct of nuclear fission processes in nuclear reactors and nuclear weapons testing. In 2019, cesium-137 was not detected in any gaging station storm water samples or base flow samples. Individual Permit–related storm water samples are not analyzed for radionuclides.

In 2019, cesium-137 activity in sediment samples did not exceed the relevant screening action level.

Chromium: Chromium is associated with potassium dichromate that was used as a corrosion inhibitor in the cooling system at the Technical Area 03 power plant (LANL 1973) and was discharged through Outfall 001 from 1956 to 1972. Filtered storm water and base flow results did not exceed surface water
quality standards in 2019 for chromium or chromium (III). There were no exceedances of the target action level for filtered chromium concentrations in the 20 Individual Permit-related runoff samples in 2019. None of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for chromium (Table 6-1).

In 2019, no storm water gaging station results exceeded the human health–organism only standard. There were no Individual Permit–related samples tested for 2,3,7,8-tetrachlorodibenzodioxin (one of the more toxic compounds) in 2019. In base flow samples analyzed for dioxins and furans (along the Rio Grande at the Otowi Bridge and at Frijoles Canyon, and Mortandad and Pajarito Canyons where they meet the Rio Grande), results were below surface water quality standards. None of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for dioxins or furans (Table 6-1).

In 2019, no sediment samples exceeded soil screening levels for dioxins or furans.

Dioxins and Furans: Dioxins and furans are associated with the incineration of medical, industrial, municipal, and private wastes; municipal waste water treatment sludge; coal-fired boilers; and diesel fuel emissions (U.S. Environmental Protection Agency 2006b). Forest fires are also a major, natural source of dioxins (Gullett and Touati 2003). Toxic equivalents are used to report the toxicity-weighted masses of mixtures of dioxins and furans. This is more meaningful than reporting the number of grams of dioxins or furans because toxic equivalents provide information on toxicity (U.S. Environmental Protection Agency 2010). In addition, there are surface water quality standards for a total dioxin toxic equivalent, whereas there are no standards for individual dioxins or furans. In 2019, no storm water gaging station results exceeded the human health–organism only standard. There were no Individual Permit–related samples tested for 2,3,7,8-tetrachlorodibenzodioxin (one of the more toxic compounds) in 2019. In base flow samples analyzed for dioxins and furans (along the Rio Grande at the Otowi Bridge and at Frijoles Canyon, and Mortandad and Pajarito Canyons where they meet the Rio Grande), results were below surface water quality standards. None of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for dioxins or furans (Table 6-1).

In 2019, no sediment samples exceeded soil screening levels for dioxins or furans.

Mercury: Natural sources of mercury include forest fires and fossil fuels such as coal and petroleum. Human activities such as mining and fossil fuel combustion have led to widespread global mercury pollution. While the Four Corners Generating Station coal-fired power plant has contributed to mercury contamination in the surrounding areas, the Laboratory also operated coal-fired power plants historically. In 2019, none of the filtered or unfiltered storm water or base flow samples had exceedances for mercury. Two of the 20 Individual Permit–related samples exceeded the target action level for mercury in 2019. Seven of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for mercury (Table 6-1).

In 2019, no sediment samples exceeded soil screening levels for mercury.

Polychlorinated biphenyls (PCBs): PCBs are stable, persistent organic compounds that break down slowly in the environment. They were commonly used as plastic and paint stabilizers and coolants in electrical appliances before they were banned in the United States in 1979. Many older construction materials, including caulking, paints, window putty, and electrical components, used PCBs (Durell and Lizotte 1998, Kakareka and Kukharchyk 2006). As these building components weather, PCBs accumulate on the landscape and are redistributed. PCBs are remobilized and distributed throughout the globe, including through atmospheric deposition (Chevreuil et al. 1996, Duinker and Boucchart 1989, Grainer et al. 1990, LANL 2012).

PCBs are associated with materials used historically by the Laboratory, including transformers; oils, solvents, and paints used in industrial activities; and a former asphalt batch plant in Sandia Canyon.
In 2019, 16 sampling locations (100% of locations) had PCB concentrations above the human health–organism only standard, 15 sampling locations (94 percent of locations) had concentrations above both the chronic aquatic life standard and wildlife standard (which are numerically equal), and one sampling location (6% of locations) had concentrations above the acute aquatic life standard. In 2019, two of two Individual Permit storm water samples exceeded the target action level for total PCBs. Twenty-eight of the 39 assessment units on Laboratory or former Laboratory lands are listed as impaired for PCBs (Table 6-1). Figures 6-10 and 6-11 show total PCB concentrations in unfiltered storm water and base flow for Los Alamos/Pueblo and Sandia/Mortandad Canyons. One Individual Permit sample in Pueblo Canyon was notably high in 2019. This location, P-SMA-2.2 will have enhanced controls installed in 2020 to initiate corrective action monitoring (N3B 2020c).

In 2019, no sediment results exceeded soil screening levels for PCBs.
This page intentionally blank.
Figure 6-10. Los Alamos Canyon watershed total PCB concentrations in unfiltered storm water from Individual Permit samplers and gaging stations and base flow from 2011 to 2019. Top panel: median storm water total PCB values for each sampling location between 2011 and 2019. Bottom panels: total PCB concentrations from Individual Permit and gage station samples from 2011 to 2019.
Polycyclic Aromatic Hydrocarbons: Asphalt is prepared using petroleum products that contain polycyclic aromatic hydrocarbons, and operations at the former asphalt batch plant in Sandia Canyon released effluent from operations to the stream. In 2019, no storm water results at the gaging stations or base flow results exceeded the water quality standards for polycyclic aromatic hydrocarbons. There were no Individual Permit–related exceedances in 2019. None of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for polycyclic aromatic hydrocarbons (Table 6-1).
For the 12 of 18 polycyclic aromatic hydrocarbon compounds that have screening levels, none of the sediment results from 2019 exceeded these screening levels.

Thallium: Gaseous emissions from cement factories and coal-fired power plants have led to thallium pollution. While the Four Corners Generating Station coal-fired power plant has contributed to thallium contamination in the surrounding areas, the Laboratory also operated coal-fired power plants historically. In 2019, none of the filtered gaging station storm water or base flow results exceeded the surface water quality standards for thallium. None of the 20 Individual Permit-related samples exceeded the target action level for thallium in 2019. None of the 39 assessment units, or stream reaches, on Laboratory or former Laboratory lands are listed as impaired for thallium (Table 6-1).

In 2019, no sediment samples exceeded soil screening levels for thallium.

CONCLUSIONS

Through the human health risk assessments in the canyons investigation reports, the biota dose assessment (Chapter 7), and human health risk assessment (Chapter 8) in this report, we have concluded that levels of chemicals and radionuclides present in storm water, base flow, and sediments are below levels that would impact human or biota health.

The scatter plots in Figures 6-6 through 6-11 show that the concentrations of chemicals exceeding screening levels in storm flow and base flow samples in 2019 fall within or below the ranges recorded in previous years, with the exception of an Individual Permit sample from Pueblo Canyon with a high total PCB concentration. This location will have enhanced controls installed in 2020.

We continue to observe very few sediment exceedances in 2019. All sediment exceedances were for manganese, except for one iron exceedance in Pueblo Canyon. Unlike other years, we did not observe any chromium or PCB exceedances.

The results of the storm water, base flow, and sediment data comparisons from samples collected in 2019 verify the conceptual model that storm water–related sediment transport observed in Laboratory canyons generally results in lower concentrations of Laboratory-released chemicals in the new sediment deposits than previously existed in deposits in a given reach. The results also support the idea that the risk assessments presented in the investigation reports represent an upper bound of potential human and ecological health risks in the canyons for the foreseeable future. Although some chemicals had concentrations in storm water, base flow, and sediment that were above screening levels in 2019, these transient events do not significantly affect human or biota health.

QUALITY ASSURANCE

Sampling of storm flow, base flow, and sediment, as well as measuring stream flow, is performed according to written quality assurance and quality control procedures and protocols. Current versions of all procedures and guides are listed at https://ext.em-la.doe.gov/EPRR/ReadingRoom.aspx?room=2. These procedures ensure that the collection, processing, and chemical analysis of samples and the validation and verification of analytical data are consistent from year to year.
REFERENCES

N3B 2020b: "2019 Update to the Site Discharge Pollution Prevention Plan; Revision 1; Los Alamos/Pueblo Watershed; Volume 1,” N3B document EM2020-0012.

TDC Environmental 2004: “Copper Sources in Urban Runoff and Shoreline Activities,” Information Update, Prepared for the Clean Estuary Partnership, TDC Environmental, LLC, San Mateo, CA.

Chapter 7 – ECOSYSTEM HEALTH

We monitor ecosystem health to determine whether operations at Los Alamos National Laboratory (LANL, or the Laboratory) affect plant or animal populations. We collect samples of soil, sediment, plants, and animals on Laboratory property, near the Laboratory perimeter, and from background locations. We test these samples for levels of radionuclides, inorganic elements (such as metals), and organic chemicals (for example, polychlorinated biphenyls [PCBs], dioxins, furans, and high explosives). We also conduct radiation dose assessments for plants and animals occupying areas around specific Laboratory facilities and around sediment retention structures in canyon bottoms. The calculated doses are compared with background levels of radiation, screening levels, and federal standards for radiation doses to plants and animals.

During 2019, soil and vegetation samples were collected around the perimeter of Material Disposal Area G at Technical Area 54. Soil, sediment, honey, honeybee, bird egg, and nestling samples were collected around the Dual-Axis Radiographic Hydrodynamic Test Facility at Technical Area 15. Bird egg and nestling samples were collected at open detonation sites and an open burning ground. Small mammals and vegetation samples were collected in Los Alamos and Pajarito Canyons. Deceased animals (primarily from animal-vehicle collisions) were collected opportunistically from various sites on and off Laboratory property. We report the sampling results here. We also report the results from avian monitoring projects and from surveys for threatened and endangered species.

Most radionuclide activities and chemical concentrations in soil, sediment, plants, and animals from onsite and perimeter locations were either not detected, were similar to background, or were below screening levels that are protective of biota. Biota dose assessments indicate that the radiation doses are far below the levels observed to have adverse effects on plants and animals. Six years of bird banding data at the Sandia wetlands were analyzed. The overall number of birds and species captured was variable; however, we observed no decreases over time in bird species diversity, abundance, or the percentage of breeding birds. Low recapture rates should be explored further. In 2019, the fall bird banding in the Pajarito wetlands captured almost three times the highest total from previous years. Surveys of birds found no differences in species richness (the number of different bird species present) around open firing sites at Technical Areas 36 and 39 and an open burning site at Technical Area 16 compared with control areas. Species diversity (which includes both the number of species and their relative abundances) was higher at the firing sites and the open burning site compared with their control areas. Endangered species surveys in 2019 confirmed that two Mexican spotted owl habitats were again occupied and that both produced young.
CHAPTER 7 – ECOSYSTEM HEALTH

INTRODUCTION

An ecosystem includes living organisms, such as plants, animals, and bacteria; nonliving physical environmental factors, such as soil, air, and water; and the interactions among these components (Smith and Smith 2012). The health of an ecosystem can be affected by environmental disturbances, including wildfire, flooding, drought, invasive species, climate shifts, chemical spills, construction projects, vegetation removal, and a host of other factors (Rapport 1998). Los Alamos National Laboratory (LANL, or the Laboratory) provides habitat to many species of plants and animals (collectively called “biota”). The primary objective of the Laboratory’s ecosystem health monitoring is to determine if past or current releases of radionuclides and chemicals from Laboratory operations are affecting local plants and animals.

The monitoring program conducts two specific types of monitoring: institutional and facility-specific. Institutional monitoring occurs site-wide and is conducted on Laboratory property, around the perimeter of the Laboratory, and at regional background locations. Institutional monitoring is used to measure the levels of radionuclides and chemicals in areas outside of designated solid waste management units and to compare predictions of chemical and radionuclide transport models with actual results. Facility-specific monitoring is used to measure the nature and extent of radionuclides and chemicals associated with specific facilities and operations at the Laboratory.

Both institutional and facility-specific results are used to assess the effects of Laboratory-released chemicals and radionuclides on ecosystem health. This is accomplished by the following:

- measuring levels of radionuclides and other chemicals in soil, plants, and animals from areas on Laboratory property and near the perimeter of the Laboratory, and then comparing these levels with
 - levels measured from background locations that are not affected by Laboratory operations,
 - levels that scientists have determined should trigger further investigation, such as screening levels, and
 - levels that may cause adverse health effects;
- evaluating trends in radionuclide and chemical levels in soil, plants, and animals over time;
- assessing population parameters and species diversity of animals in areas that are potentially affected by Laboratory operations; and
- estimating radiation dose and chemical risk to biota based on the collected information.

The Laboratory also monitors migratory bird species to meet regulatory commitments.

This chapter reports on levels of radionuclides, inorganic elements (mostly metals), and organic chemicals in soil and biota samples that were collected onsite at the Laboratory from perimeter locations and from regional background locations. Specifically, we report on terrestrial ecosystem health for 2019, including (1) facility-specific results, such as monitoring around Area G, the Dual-Axis Radiographic Hydrodynamic Test Facility, and around two sediment retention structures; (2) results for chemical levels in mammals, birds, and snakes that were collected opportunistically; and (3) bird population abundance and diversity monitoring results. Finally, we calculated an overall biota radiation dose for organisms occupying mesa tops and canyon bottoms. We compared our results with background levels, screening levels, and federal dose standards.
TERRESTRIAL HEALTH ASSESSMENT

One way we assess terrestrial ecosystem health is by monitoring levels of constituents in a variety of environmental media including soil, native vegetation, honey bees (*Apis mellifera*) or honey, small mammals, bird eggs, and other animals collected opportunistically (as roadkills, for example). Environmental samples are routinely analyzed for radionuclides, inorganic elements such as metals, and organic chemicals such as polychlorinated biphenyls (PCBs), high explosives, dioxins, furans, volatile organic compounds, and semi-volatile organic compounds. In 2019, select samples were also analyzed for per- and polyfluoroalkyl substances (PFAS).

Soil is useful for monitoring because it receives substances that are released in air emissions and particles that are transported by wind and water. Soil data can thus provide information about several modes of chemical and radionuclide transport. Monitoring soil over time also directly measures long-term trends of radionuclide and other chemical concentrations around nuclear facilities (DOE 2015).

Levels of constituents in soil collected at and near the Laboratory are compared with regional statistical reference levels calculated from samples collected at regional background locations. Radionuclides and other chemicals in soil collected from regional background locations come from naturally occurring elements in the soil or from man-made sources that are not attributed to the Laboratory. These sources include worldwide fallout of radioactive particles from nuclear facility accidents or testing of atomic weapons and chemical releases from non-Laboratory sources, such as power plants and automobile emissions. The regional statistical reference level for a chemical or radionuclide is the level below which 99 percent of the regional background locations results fall. As required by the U.S. Department of Energy (DOE), all background locations are at a similar elevation to the Laboratory, are more than 9.3 miles away from the Laboratory, and are beyond the range of potential influence from normal Laboratory operations (DOE 2015).

Levels of constituents in soil are also compared with ecological screening levels (LANL 2017a). Ecological screening levels include the highest level of a radionuclide or chemical in the soil that is known to not affect selected animals or plants (the no-effect ecological screening level) and the lowest level known to have caused an adverse effect on selected animals or plants (the low-effect ecological screening level) (LANL 2017a). Soil ecological screening levels exist for the following terrestrial ecological receptors: generic plant; earthworm—representing soil-dwelling invertebrates; desert cottontail (*Sylvilagus*...}

What are PFAS?

Per- and polyfluoroalkyl substances (PFAS) are a class of synthetic compounds that are found in many manufactured items such as cookware, food packaging, stain repellents, and fire-fighting foams. They can repel oil, stains, grease, and water, and are fire-resistant. There are nearly 6,000 types of PFAS compounds known, some of which have been more widely used and studied than others.

The widespread use of PFAS and their ability to persist in the environment means that past and current uses may result in increasing PFAS levels in the environment and bioaccumulation in animal tissue. PFAS also have possible impacts on human health.

Currently, neither the U.S. Environmental Protection Agency nor the State of New Mexico regulate PFAS compounds. In 2016, the U.S. Environmental Protection Agency issued a health advisory level of 70 parts per trillion in drinking water for three individual PFAS compounds. This health advisory level is nonenforceable and nonregulatory. In the beginning of 2020, the U.S. Environmental Protection Agency added specific PFAS to the list of reportable compounds under the Toxic Release Inventory. In addition, specific PFAS have been proposed to be added to the Comprehensive Environmental Response, Compensation, and Liability Act list of hazardous substances.
Audubonii)—representing mammalian herbivores; deer mouse (Peromyscus maniculatus)—representing mammalian omnivores; montane shrew (Sorex monticolus)—representing mammalian terrestrial insectivores; Botta’s pocket gopher (Thomomys bottae)—representing burrowing mammals; gray fox (Urocyon cinereoargenteus)—representing mammalian carnivores; occult little brown bat (Myotis lucifugus occultus)—representing mammalian aerial insectivores; American robin (Turdus migratorius)—representing avian omnivores, herbivores, and insectivores; violet-green swallow (Tachycineta thalassina)—representing avian aerial insectivores; and American kestrel (Falco sparverius)—representing avian carnivores (LANL 2017a).

Monitoring levels of constituents in biological tissues provides information regarding whether chemicals in the environment are being taken up by plants and animals and allow us to compare observed levels with levels that scientists have determined are potentially associated with adverse health effects to the individual plant or animal. Levels of chemicals in biological tissues are compared with the lowest observable adverse effect levels, if available. A lowest observable adverse effect level is the lowest concentration measured in an animal’s tissues that has produced an adverse effect in a population of animals or plants (U.S. Environmental Protection Agency 2014). Levels of radionuclides in tissues are compared with biota dose screening levels, which are set at 10 percent of the DOE limit for radiation doses to biota (DOE 2019, McNaughton 2006).

If a radionuclide in soil or in biota is detected at an activity that is higher than the screening levels, then—using all of the available data—the dose to biota is calculated using RESRAD-BIOTA software (version 1.8) (http://resrad.evs.anl.gov/codes/resrad-biota/), which is DOE’s methodology for evaluating radiation doses to aquatic and terrestrial biota. This calculated dose is compared with DOE limits: 1 rad per day for terrestrial plants and aquatic animals, and 0.1 rad per day for terrestrial animals (DOE 2019).

We perform statistical tests to evaluate differences in constituents among sites and to examine trends in constituent levels over time. Examples of these tests include t-tests, analysis of variance, Kruskal-Wallis tests, Kendall’s Tau tests, linear regressions, and generalized linear models. Samples collected within approximately the last 10 years are used to look at trends over time because the samples are directly comparable: they were analyzed with similar analytical methods and instruments and have similar detection limits. We test a null hypothesis for each set of data, typically that there are no differences among locations or that there are no increasing trends over time. For each test, we select a probability level, or p-value, of the null hypothesis being correct at which we accept or reject the null hypothesis. We use a p-value of less than 5 percent (p < 0.05) as our threshold to reject the null hypothesis of no difference among locations or no trend over time. If the p-value is greater than 5 percent (p > 0.05), we accept the null hypothesis of no difference or no trend.

Facility Soil and Vegetation Monitoring

Area G at Technical Area 54

Area G was established in 1957 and is the Laboratory’s primary low-level radioactive solid waste burial and storage site (Figure 7-1) (DOE 1979, Martinez 2006). Tritium, plutonium, americium, and uranium are the main radionuclides in waste materials at Area G (Mayfield and Hansen 1983). The Laboratory has conducted soil, vegetation, and small mammal monitoring at Area G since 1980 to determine whether radionuclides are migrating beyond the waste burial area (LANL 1981, Mayfield and Hansen 1983).
We collect surface soil and vegetation at Area G each year for testing. Surface soil grab samples (0 to 6 inches deep) and composite tree samples, primarily of one-seed juniper (*Juniperus monosperma*), were collected in June 2019 at 13 designated locations around the perimeter of Area G. Soil and one composite tree sample were collected at the bottom of Cañada del Buey near the boundary between the Laboratory and the Pueblo de San Ildefonso (Figure 7-1). All samples were analyzed for tritium, americium-241, cesium-137, plutonium-238, plutonium-239/240, strontium-90, uranium-234, uranium-235/236, and uranium-238.

Radionuclides in Soil and Vegetation at Area G

In 2019, cesium-137, strontium-90, uranium-234, and uranium-238 activities were below, and uranium-235/236 activity was similar to or below regional statistical reference levels in all soil samples collected around the perimeter of Area G. Similar to previous years, americium-241, plutonium-238, plutonium-239/240, and tritium were detected above the regional statistical reference levels in many soil locations around the perimeter of Area G in 2019 (Supplemental Table S7-1).
Ameriium-241, plutonium-238, and plutonium-239/240 in soil samples collected on the north, northeastern, and eastern side of Area G were above the regional statistical reference level. These concentrations are similar to previous years and are not increasing over time (Kendall’s Tau, p > 0.05; see Figure 7-2). Plutonium-239/240 activities are decreasing over time at both the 40-01 and 42-01 sampling locations (Kendall’s Tau, p < 0.05). Levels of tritium in soil samples collected on the southern side of Area G were above the regional statistical reference level, which are consistent with data from previous years. Tritium levels are not statistically increasing over time (Kendall’s Tau, p > 0.05; see Figure 7-2).

Figure 7-2. (A) Americium-241, (B) plutonium-238, (C) plutonium-239/240 activities in surface soil samples collected from five locations on the northern, northeastern, and eastern side (locations 38-01, 40-01, 42-01, 45-05, and 48-01), and (D) tritium activities in surface soil samples collected from two locations on the southern side (locations 29-03 and 30-01) of Area G at Technical Area 54 from 2009 to 2019. Data are compared with the regional statistical reference level (green dashed line) and the lowest no-effect ecological screening level (red dashed line). Note the logarithmic scale on the vertical axis. Points represent mean and error bars represent standard deviation. Bottom error bars are absent on some points as the error would have been a negative value; however, negative values cannot be shown on a logarithmic axis. Note: pCi/g = picocuries per gram.

Results from native trees (primarily one-seed juniper) can be an indicator of both uptake by roots and of deposition of radionuclides on the surfaces of leaves and branches. Tree samples were collected at the same general locations as the soil samples (Figure 7-1); however, because of a firebreak along the fence
line, some of the trees were located more than 30 feet away from the fence around Area G, particularly on the northern and eastern sides.

The majority of radionuclides in overstory vegetation samples were either not detected or were below the regional statistical reference levels and all activities were below the biota dose screening levels (Supplemental Table S7-2). The majority of radionuclides in vegetation are not changing over time (Kendall’s Tau, p > 0.05). Results for americium-241 between 2009 and 2018, reported in last year’s Annual Site Environmental Report (which included four locations), had a decreasing trend; however, after including the 2019 results, there was no significant trend in americium-241 values at the north, northeastern, and eastern sides of Area G (which included five locations; Figure 7-3).

![Figure 7-3](image)

Figure 7-3. (A) Americium-241 activities in overstory vegetation samples collected from five locations on the northeastern corner of Area G (locations 38-01, 40-01, 42-01, 45-05, and 48-01), and (B) tritium activities in overstory vegetation samples collected from two southern locations (locations 29-03 and 30-01) around Area G at Technical Area 54 from 2009 to 2019. Data are compared with the regional statistical reference level (green dashed line) and biota dose screening level for overstory vegetation (red dashed line). Note the logarithmic scale on the vertical axis. Points represent mean and error bars represent standard deviation. Bottom error bars are absent on some points as the error would have been a negative value; however, negative values cannot be shown on a logarithmic axis. Note: pCi/g = picocuries per gram and pCi/mL = picocuries per milliliter.

Similar to previous years, tritium in overstory vegetation was highest (up to 748 picocuries per milliliter) in trees growing in the southern sections near the tritium disposal shafts. The overall trend in plant tritium is highly variable from year to year but the levels have not been increasing over time (Kendall’s Tau, p > 0.05; Figure 7-3). Variability in plant tritium levels may be a result of any, or a combination, of the following: soil moisture, depth of roots, time of sampling, distance from the perimeter fence, temperature, or barometric pressure.

Radionuclides in Soil and Vegetation near the Laboratory/Pueblo de San Ildefonso Boundary in Cañada del Buey

In 2019, a duplicate-split soil sample (where soil is thoroughly mixed in a bag and split into two sample containers) was collected at a location known as T3-B near the Technical Area 54 and Pueblo de San Ildefonso boundary and near T3 in Figure 7-1. This location was sampled during 2016 through 2019.
From 2006 through 2015, soil was collected near a location known as T3-E, which is near a fence that roughly divides the two properties.

The majority of radionuclide activities in soil were not detected or were below the regional statistical reference level. All activities were below the ecological screening levels (Supplemental Table S7-1). Americium-241 was detected at 0.0191 and 0.0220 picocuries per gram, slightly above the regional statistical reference level of 0.0187 picocuries per gram. Plutonium-239/240 was detected at 0.1000 and 0.1050 picocuries per gram, above the regional statistical reference level of 0.0571 picocuries per gram. These observations are on Laboratory property and are well below the no-effect ecological screening levels for americium-241 and plutonium 239/240 of 190 and 870 picocuries per gram, respectively.

Between 2016 and 2019, concentrations of radionuclides in soil near the Technical Area 54 and Pueblo de San Ildefonso boundary did not show any trends over time (Kendall’s Tau, p > 0.05; Figure 7-4).

Figure 7-4. (A) Americium-241, (B) plutonium-238, (C) plutonium-239/240, and (D) uranium-234 and uranium-238 activities in soil collected near the Technical Area 54 and Pueblo de San Ildefonso border from 2009 through 2019. Results from 2009 through 2015 were at the T3-E location (near the fence); results from 2016 through 2019 were at the T3-B location (near the road). Results from 2018 and 2019 are the average of duplicated samples. Data are compared with the regional statistical reference level (green dashed line) and the lowest no-effect ecological screening level (red dashed line). Note the logarithmic scale on the vertical axis. Points represent true values (between 2009 and 2017, n = 1 each) or represent mean values (between 2018 and 2019, n = 2 each), and error bars represent standard deviation. Note: pCi/g = picocuries per gram.
All three uranium isotopes were detected in all soil samples collected near the Technical Area 54 and Pueblo San Ildefonso boundary and were all below the regional statistical reference level (Table S7-1). The near 1:1 ratio of uranium-234 to uranium-238 activities (Figure 7-4) indicates that these uranium activities are from naturally occurring sources (U.S. Nuclear Regulatory Commission 2019) and the concentrations observed here are within the range of Laboratory background concentrations (Ryti et al. 1998).

Radionuclides in overstory vegetation collected near the Technical Area 54 and Pueblo de San Ildefonso boundary were all below the regional statistical reference level, except for plutonium-239/240, which was observed at 0.0186 picocuries per gram (the regional statistical reference level is 0.0118 picocuries per gram). All radionuclides are far below the biota dose screening level, which are protective of biota, and no radionuclide levels are trending over time in vegetation (Table S7-2).

Dual-Axis Radiographic Hydrodynamic Test Facility at Technical Area 15

The Dual-Axis Radiographic Hydrodynamic Test Facility at Technical Area 15 is a principal Laboratory explosives firing site. Soil, sediment from drainages, plants, and animals are monitored at the facility to determine whether constituents released from operations may be affecting plants or animals and if the levels are consistent with our expectations of radionuclide and chemical uptake. Environmental monitoring has occurred annually since 1996. The firing site began operations in 2000. Open-air detonations occurred from 2000 to 2002, detonations using foam mitigation were conducted from 2003 to 2006, and detonations within closed steel containment vessels have been conducted since 2007.

Monitored constituents in soil and sediment include radionuclides, beryllium (and other inorganic elements), and organic chemicals such as high explosives, dioxins, and furans. Routine biological samples collected around the Dual-Axis Radiographic Hydrodynamic Test Facility have included overstory branches, small mammals, honey bees and/or honey, and bird eggs and nestlings. Samples of soil, sediment, and one type of biota are collected annually; typically, vegetation, honey or honey bees, and small mammals sampling is rotated annually so that each is sampled once in a 3-year period. Bird samples are collected opportunistically when abandoned or infertile eggs or deceased nestlings are found in local nest boxes.

In 2019, we collected soil, sediment, honey bees, and honey at the facility. For soil sampling, five surface soil subsamples were collected at each location at a depth from 0 to 2 inches, combined, and mixed. The samples were collected in May 2019 on the north, east, south, and west sides of the Dual-Axis Radiographic Hydrodynamic Test Facility perimeter along the fence line (Figure 7-5). An additional composite soil sample was collected about 75 feet north of the firing point along the side of the protective berm. Sediment grab samples were collected at depths from 0 to 6 inches on the north, east, south, and southwest sides within drainages around the facility (Figure 7-5). All soil and sediment samples were analyzed for radionuclides, including americium-241, cesium-137, plutonium-238, plutonium-239/240, strontium-90, tritium, uranium-234, uranium-235/236, and uranium-238; inorganic elements, including aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc; and high explosives. The sample nearest to the firing point was also analyzed for dioxins and furans.
Constituent results in soil samples are compared with the baseline statistical reference levels. The baseline statistical reference levels for the Dual-Axis Radiographic Hydrodynamic Test Facility are based on samples collected at the facility during 1996 to 1999, before the beginning of firing site operations. The baseline level for each constituent is the level below which 99 percent of samples from this time occurred (Nyhan et al. 2001). In cases where there are no baseline statistical reference levels (mostly inorganic elements like aluminum, calcium, cobalt, iron, magnesium, manganese, potassium, sodium, vanadium, and zinc), the soil and biota chemical results are compared with regional statistical reference levels.

Beehives were established north of the Dual-Axis Radiographic Hydrodynamic Test Facility and bees were consistently collected and chemically analyzed through 2013. In 2019, three old beehives were replaced with three new beehives and bees. One of the old hives still contained live bees, which were collected for inorganic element and radionuclide analyses. Honey was also collected from the old active hive and was analyzed for inorganic elements, radionuclides, high explosives, and PFAS.
Wild bird eggs have sometimes been shown to reflect chemical exposures from the location where a
female bird feeds during egg formation (Dauwe et al. 2005). However, chemicals from the female’s
previous exposures, such as on migration routes or wintering grounds, can also be deposited into eggs
(Bustnes et al. 2010). Nestlings tend to reflect local chemical exposures due to their limited mobility.
Eggs that did not hatch and nestlings that died of natural causes were collected from nest boxes
surrounding the Dual-Axis Radiographic Hydrodynamic Test Facility and chemically analyzed (Figure 7-5).
One egg sample, consisting of an individual mountain bluebird (*Sialia currucoides*) egg, was collected
and analyzed for inorganic elements. Two nestling samples, consisting of an individual western bluebird
(*Sialia mexicana*) and an individual mountain bluebird nestling, were collected and analyzed for
plutonium and uranium isotopes.

**Results for Radionuclides and Chemicals in Soil, Sediment, Honey Bees, Honey, Bird Eggs, and Nestlings at
the Dual-Axis Radiographic Hydrodynamic Test Facility**

Soil and sediment samples collected around the Dual-Axis Radiographic Hydrodynamic Test Facility did
not contain detectable levels of americium-241 or tritium, and the majority of samples did not contain
detectable levels of cesium-137, plutonium-238, or strontium-90 (Table S7-3). Detectable activities of
cesium-137, plutonium-238, plutonium-239/240, and strontium-90 were all were below the baseline
regional statistical reference level, and/or regional statistical reference level (Table S7-3).

In 2019, soil and sediment samples contained all three isotopes of uranium. This observation is
consistent with previous years. Several samples contained activities of uranium that were higher than
the regional statistical reference level and the baseline statistical reference level. The relative isotopic
abundance of uranium-234, uranium-235, and uranium-238 activities indicate that the uranium in these
samples is depleted uranium (uranium from testing activities) rather than natural uranium (e.g., 84.7
percent uranium-238, 1.1 percent uranium-235, and 15.2 percent uranium-234 [International Atomic
Energy Agency 2019a]). The highest level of uranium-238, 21.2 picocuries per gram, was observed in a
sediment sample collected on the south side of the Dual-Axis Radiographic Hydrodynamic Test Facility
and is higher than typical observations. The majority (97 percent) of uranium-238 activities are less than
10 picocuries per gram in soil and sediment collected at the Dual-Axis Radiographic Hydrodynamic Test
Facility. All radionuclide activities are far below ecological screening levels that are protective of biota
(Table S7-3).

Operations at the Dual-Axis Radiographic Hydrodynamic Test Facility have changed since 2007 to include
the use of closed containment vessels. Since 2008, uranium-238 activity near the firing point has mostly
been similar to the baseline statistical reference level (Figure 7-6). Levels of radionuclides in soil and
sediment samples collected around the Dual-Axis Radiographic Hydrodynamic Test Facility are not
increasing over time (Kendall’s Tau, p > 0.05).
Figure 7-6. Uranium-238 activities in surface soil and sediment samples collected around the Dual-Axis Radiographic Hydrodynamic Test Facility and in the firing point soil samples from 2009 to 2019 compared with the baseline statistical reference level (mean plus 3 standard deviations of soil uranium-238 pre-operations; green dashed line) and the lowest no-effect ecological screening level for the generic plant as an ecological receptor (red dashed line). Note the logarithmic scale on the vertical axis. Points represent true values (firing point) or represent means (sediment and soil) and error bars represent standard deviation. Bottom error bars are absent on some points as the error would have been a negative value; however, negative values cannot be shown on a logarithmic axis. Note: pCi/g = picocuries per gram.

All inorganic elements, except for mercury, were found at detectable concentrations in all soil and sediment samples collected in 2019. Mercury was found at detectable concentrations in some samples. Concentrations of aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, iron, lead, magnesium, nickel, potassium, and silver were below all reference and screening levels, including the baseline statistical reference levels, regional statistical reference levels, and both the no- and low-effect ecological screening levels of select elements (Table S7-4). Consistent with observations from previous years, in some soil and sediment samples concentration of manganese (four samples), mercury (one sample), thallium (six samples), and vanadium (nine samples) exceeded the no-effect ecological screening level for the plant, montane shrew, or American robin and/or the low-effect ecological screening level for the American robin. This included the soil sample collected at the firing point; however, all concentrations of these elements were below the regional statistical reference level and the baseline statistical reference level (when available). As a note, the regional statistical reference level of these elements is also above the no-effect ecological screening level (Table S7-4).

The soil sample collected at the firing site contained copper (19 milligrams per kilogram) that was higher than regional statistical reference level (17 milligrams per kilogram) and the no-effect ecological screening level for the American robin (14 milligrams per kilogram), but was below the baseline statistical reference level (86 milligrams per kilogram; Table S7-4). Six soil and sediment samples contained selenium concentrations (range 0.75 to 0.95 milligrams per kilogram) that were above the baseline statistical reference level (0.68 milligrams per kilogram) and the no-effect ecological screening level for the plant (0.52 milligrams per kilogram) and montane shrew (0.70 milligrams per kilogram), but
were below the regional statistical reference level (1.79 milligrams per kilogram; Table S7-4). Three sediment samples contained zinc concentrations (range 53 to 90 milligrams per kilogram) that were higher than the regional statistical reference level (50 milligrams per kilogram) and were above the no-effect ecological screening level for the American robin (47 milligrams per kilogram; Table S7-4). Three sediment samples also exceeded the regional statistical reference level for sodium (140 milligrams per kilogram; range of exceedances 170 to 230 milligrams per kilogram), although no other reference values for sodium are available (Table S7-4). Although concentrations of some inorganic chemicals exceeded the no-effect ecological screening levels, the majority were below the low-effect ecological screening levels. The number of locations with concentrations potentially associated with adverse effects at an individual level are minimal, and no impacts to populations or communities of plants and animals are expected.

Consistent with data in previous years, selenium (Figure 7-7) and copper concentrations were increasing over time in the sediment sample collected from the east side of the Dual-Axis Radiographic Hydrodynamic Test Facility; in 2019, zinc in sediment was also increasing at this sampling location (Kendall’s Tau, p < 0.05). Arsenic, cadmium, and selenium were increasing over time in soil collected from the east side of the Dual-Axis Radiographic Hydrodynamic Test Facility, and arsenic was increasing over time in soil collected from the south side (Kendall’s Tau, p < 0.05). These trends will be monitored closely in future sampling. No other elements are increasing over time around the Dual-Axis Radiographic Hydrodynamic Test Facility.

Figure 7-7. (A) Selenium and (B) beryllium concentrations in surface soil and sediment samples collected around the Dual-Axis Radiographic Hydrodynamic Test Facility and near the firing point soil sample from 2009 to 2019, compared with the baseline statistical reference level (mean plus 3 standard deviations of soil concentrations pre-operations; green dashed line) and the lowest no-effect ecological screening level (red dashed line). Note the linear scale on the vertical axis. Points represent true values (firing point) or represent means (sediment and soil, n = 4 each) and error bars represent standard deviation. Note: mg/kg = milligrams per kilogram.

Beryllium, listed as a chemical of potential concern before the start-up of operations at the facility (DOE 1995), was not detected above the baseline statistical reference level (1.3 milligrams per kilogram) in any of the soil or sediment samples during 2019. Beryllium concentrations in all soil and sediment samples from 2009 to 2019 have been below the baseline statistical reference level (Figure 7-7).
Consistent with previous years, no high-explosives chemicals or furans were detected in any of the soil or sediment samples collected within or around the perimeter of the Dual-Axis Radiographic Hydrodynamic Test Facility in 2019, including the sample closest to the firing point (Table S7-5). Most dioxins, including 2,3,7,8-tetrachlorodibenzo-dioxin (TCDD), were also not detected in the soil sample collected at the firing site (Table S7-6). The only detected dioxin congeners were 1,2,3,4,6,7,8-heptachlorodibenzodioxin and 1,2,3,4,6,7,8,9-octachlorodibenzodioxin at concentrations of 0.001 and 0.007 nanograms per kilogram, respectively. There are no ecological screening levels for these dioxin congeners; however, toxic equivalent factors for TCDD-like compounds can be used to calculate the TCDD toxic equivalent for dioxin-like compounds. The toxic equivalent factor is 0.01 for 1,2,3,4,6,7,8-heptachlorodibenzodioxin and 0.0003 for 1,2,3,4,6,7,8,9-octachlorodibenzodioxin (Van den Berg et al. 2006). Multiplying the detectable concentrations of these congeners by their respective toxic equivalent factors yields a value that is orders of magnitude less than the no-effect ecological screening level for TCDD.

In the mountain bluebird egg, several inorganic elements were not detected, including aluminum, arsenic, beryllium, cadmium, chromium, cobalt, lead, nickel, silver, thallium, and vanadium; these observations are similar to previous years. All detectable concentrations of elements were below the regional statistical reference level (Table S7-7).

Plutonium-238 and plutonium-239/240 were not detected in either of the nestling samples collected around the Dual-Axis Radiographic Hydrodynamic Test Facility (Table S7-7). Uranium-234, uranium-235/236, and uranium-238 were detected in nestlings and were similar to previous results; uranium-238 was detected (0.225 and 0.270 picocuries per gram) above the regional statistical reference level (0.197 picocuries per gram; Figure 7-8). Although not enough data are available for a trend analysis, there is no difference of uranium-234 or uranium-238 isotopes in nestlings collected from the Dual-Axis Radiographic Hydrodynamic Test Facility (n = 4) when compared with background ([n = 3], unpaired t-test, p > 0.05, Figure 7-8). All radionuclide levels were far below the biota dose screening level (DOE 2019). Uranium isotopes 234, 235/236, and 238 have been detected in soils, sediments, and small mammals collected around the Dual-Axis Radiographic Hydrodynamic Test Facility at levels that have exceeded the regional statistical reference levels in the recent past (Gaukler et al. 2018, Fresquez et al. 2016). These results suggest that uranium is bioavailable and is being incorporated into nestling tissues but is below levels associated with harmful effects.
Figure 7-8. Uranium-234 and uranium-238 activities in nestling samples collected around the Dual-Axis Radiographic Hydrodynamic Test (DARHT) Facility and from the background location located at Bandelier National Monument from 2017 to 2019. Data are compared with the regional statistical reference level (the mean plus 3 standard deviations of background concentrations; purple dashed line for uranium-234 and green dashed line for uranium-238) compared with the biota dose screening level for the generic plant as an ecological receptor (red dashed line for uranium-234 and gray dashed line for uranium-238). Note the linear scale on the vertical axis. Columns represent mean values and error bars represent standard deviation. Note: pCi/g = picocuries per gram.

Honey bees were analyzed for inorganic elements and radionuclides. The majority of inorganic elements were below the regional statistical reference level (Table S7-8) and no inorganic elements in honey bees are changing over time. Tritium, uranium-234, and uranium-238 were the only radionuclides that were detected (Table S7-8). No radionuclides are increasing in bees over time and uranium-238 was found to be decreasing over time (Kendall’s Tau, p < 0.05). As only one sample from background is available, a regional statistical reference level could not be calculated; however, comparisons between the honey bee sample collected from the Dual-Axis Radiographic Hydrodynamic Test Facility were made with the honey bee sample collected from a background location. Uranium isotopes in the honey bee sample from the Dual-Axis Radiographic Hydrodynamic Test Facility were less than background and tritium levels were similar. All radionuclide activities were below the biota dose screening levels.

The honey sample was analyzed for inorganic elements, radionuclides (Table S7-8), high explosives, and PFAS. No radionuclides, high explosives, or PFAS were detected. Because only one honey sample from background is available for inorganic elements, a regional statistical reference level could not be calculated; however, comparisons between the honey sample collected from the Dual-Axis Radiographic Hydrodynamic Test Facility were made with the honey sample collected from a background location. The majority of inorganic elements were similar in concentrations and detection patterns (Table S7-8). No constituent levels found in honey collected near the Dual-Axis Radiographic Hydrodynamic Test Facility are of ecological concern.

Chemicals in Bird Eggs and Nestlings at Open Detonation and Open Burning Firing Sites

Bird eggs and nestlings are useful for monitoring chemicals, radionuclide exposures, and uptake in biological systems because different species occupy many trophic levels. Additionally, the collection of
nonviable eggs and/or nestlings that die of natural causes is noninvasive and nondestructive to populations. Inorganic elements and organic chemicals can pose risks of adverse effects to birds if exposed at high enough concentrations (Jones and de Voogt 1999). Sources of inorganic elements include both releases from human activities and natural geological sources. Birds can be exposed through a number of routes including diet, ingestion of soil, drinking water, and inhalation. Avian nest boxes have been placed at two firing sites located at Technical Area 36 (Minie) and Technical Area 39 Point 6, and at the burning grounds located at Technical Area 16 for monitoring purposes. Inorganic elements (mostly metals), dioxins, and furans are of interest at open detonation firing sites (Minie and Technical Area 39) and at the burning grounds at Technical Area 16 (Fresquez 2011).

Nonviable eggs and nestlings that die from natural causes were collected and analyzed for chemicals. In 2019, weather conditions led to higher than usual numbers of nonviable eggs due to warm temperatures in the early spring and then a period of very cold temperatures. We collected 31 nonviable eggs on Laboratory property and 39 nonviable eggs at background locations located at Bandelier National Monument. Chemical concentrations were evaluated in 26 nonviable western bluebird and five nonviable mountain bluebird eggs that were collected from eight nest boxes at the Laboratory near the open detonation firing sites and near the burning grounds. Because of limited sample mass, nonviable eggs were evaluated for inorganic elements only. Results were compared with the regional statistical reference levels calculated from nonviable eggs of western bluebirds and ash-throated flycatchers (*Myiarchus cinerascens*) from background locations between 2016 and 2019 (n = 23 samples).

One deceased ash-throated flycatcher nestling was obtained from the Technical Area 16 open burning site in 2019. The nestling was collected from a nest box and had died of natural causes. The nestling was analyzed for dioxins, furans, and total PCBs. Results were compared with 2,3,7,8-tetrachlorodibenzodioxin toxic equivalents values and the regional statistical reference levels calculated from deceased nestlings of western bluebirds and ash-throated flycatcher nestlings from background locations between 2018 and 2019 (n = 4 samples). Nonviable egg and nestling results were also compared with the lowest observable adverse effect levels from peer-reviewed literature when available.

Results of Chemical Concentrations in Bird Eggs

The majority of inorganic elements were either not detected or were below the regional statistical reference levels in bird eggs collected from Technical Area 16 (six samples), Technical Area 36 (one sample), and Technical Area 39 (one sample; Table S7-9). Of the elements containing detectable concentrations in eggs collected from Technical Area 16, antimony, barium, and selenium were detected at concentrations above the regional statistical reference levels (Table S7-9). These results are described in detail below.

Two samples from Technical Area 16 contained barium concentrations (68 and 210 milligrams per kilogram; Table S7-9) that were above the regional statistical reference level of 31 milligrams per kilogram. Legacy barium in the canyon sediment is known to occur in the area and has been detected in water samples near Cañon de Valle (LANL 2003), which may suggest that birds may be exposed by direct ingestion of water and then the constituent was transferred to their eggs. No reliable screening levels are available for barium; thus, it is unknown at what concentrations adverse effects could be expected. However, of the nonviable egg samples collected at Technical Area 16 since 2016 (n = 17), only five of
them contained concentrations above their respective regional statistical reference level. Additionally, percentages of eggs hatched in nest boxes at Technical Area 16 (n = 48) compared with nest boxes at background locations (n = 120) were not statistically different (Kruskal-Wallis test; p > 0.05). The hatching success in nest boxes at Technical Area 16 (n = 48) was 74.5 percent and was consistent with those reported previously for the area (Fair and Myers 2002). Barium did not have a negative impact on eggshell thickness when we compared data from Technical Area 16 (n = 40) and background locations (n = 54) from 2016 through 2019 (mixed-effects regression model; p > 0.05). These results suggest that adverse effects from barium at the population level is unlikely.

Antimony was detected slightly above the regional statistical reference level of 0.26 milligrams per kilogram in one sample from Technical Area 16 (0.27 milligrams per kilogram; Table S7-9). No reliable screening levels are available for antimony. One other sample at Technical Area 16 had levels of selenium (3.5 milligrams per kilogram) that exceeded the regional statistical reference level for selenium (3.3 milligrams per kilogram). Selenium is an essential micronutrient and needed by living organisms. The selenium concentration was far below 8.0 milligrams per kilogram, which is the lowest observable adverse effect level (Ohlendorf and Heinz 2011).

The overall results indicate that the levels of inorganic elements in the eggs of western and mountain bluebirds at the open detonation firing sites and at the burning grounds are not likely to cause adverse effects in breeding bird populations. Many constituents were not detected in the nonviable egg samples. Most constituents that were detected were below regional statistical reference levels, and all were below the lowest observable effect levels (when available).

Results of Chemical Concentrations in Bird Nestlings

Most dioxins and furans were not detected in the nestling sample collected from Technical Area 16. The sample contained detectable concentrations of 1,2,3,4,6,7,8,9-octachlorodibenzodioxin at 7.65 picograms per gram and 1,2,3,4,6,7,8-heptachlorodibenzodioxin at 4.08 picograms per gram, which exceeds the regional statistical reference levels of 2.42 picograms per gram and 1.48 picograms per gram, respectively. Lowest observable adverse effect levels are not available for each dioxin and furan congener. However, in eastern bluebird eggs, 2,3,7,8-tetrachlorodibenzo-p-dioxin, which is the most potent dioxin congener, induced toxic effects in concentrations between 1,000 to 10,000 picograms per gram wet weight (Harris and Elliott 2011). Toxic equivalent factors can be used to calculate the toxic equivalent values of dioxin-like compounds. The toxic equivalent factor for 1,2,3,4,6,7,8,9-octachlorodibenzo-p-dioxin for avian species is 0.0001 (Van den Berg et al. 1998); multiplying the detectable concentration of 7.65 picograms per gram by the toxic equivalency factor yields a value of 0.000765, which is many orders of magnitude less than the lowest observable adverse effect level for 2,3,7,8-tetrachlorodibenzo-p-dioxin seen in eastern bluebird eggs.

PCBs were detected at 0.0126 milligrams per kilogram and were above the regional statistical reference level of 0.0045 milligrams per kilogram. The lowest observable adverse effect level in avian eggs is 1.0 milligrams per kilogram (Harris and Elliott 2011). Thus, even though the PCB concentrations are higher than the regional statistical reference level, these levels are not expected to negatively impact the bird population.

Many constituents were not detected and most constituents were below regional statistical reference levels, lowest observable adverse effect levels, and toxic equivalents. These findings suggest that the
detectable concentrations are not of ecological concern. More data are needed, including additional
nestling samples from firing sites, to make robust assessments and to evaluate trends over time.

Biota Monitoring at Sediment and Flood-Retention Structures

The Laboratory has constructed flood- and sediment retention structures to reduce flood risks and to
stop or slow the movement of sediments and associated chemicals and radionuclides off Laboratory
property. Many chemicals and radionuclides in waste products adhere to soil and sediment particles. Storm water flows can transport these soil and sediment particles downstream in canyon bottoms.

The Los Alamos Canyon weir and the Pajarito Canyon flood-retention structure were built following the Cerro Grande fire in 2000. As part of an environmental analysis of actions taken in response to the Cerro Grande fire, DOE identified various measures to minimize impacts resulting from the fire (DOE 2000). One of the measures is monitoring soil, surface water, groundwater, and biota upstream of flood-control structures within sediment retention basins and within sediment traps to determine if constituent concentrations in these areas adversely affect plants or animals.

To this end, we collect native grasses and forbs and wild mice in the retention basins of the Los Alamos Canyon weir and the Pajarito Canyon flood-retention structure on an annual basis for environmental monitoring purposes.

We attempt to collect the following samples from each location annually: (1) a composite understory vegetation sample for radionuclide and inorganic element analyses; (2) a composite sample of approximately 100 grams of whole-body deer mice for radionuclide analyses; (3) three individual wild mice for inorganic elements analyses; and (4) three individual wild mice for PCB analysis. The following two sections report the 2019 results of this monitoring.

Los Alamos Canyon Weir

The Los Alamos Canyon weir is a water-control structure made of rock-filled wire cages called gabions. The weir was built in Los Alamos Canyon near the northeastern boundary of the Laboratory. The retention basin upstream of the weir covers more than one acre. Accumulated sediment was excavated from the retention basin in 2009, 2011, 2013, and 2014. Sediment excavated in 2009 was placed on the west side of the basin and stabilized, whereas sediment excavated in 2011, 2013, and 2014 was analyzed, placed on a plastic liner, contained within a berm, compacted, and seeded approximately 0.5 miles west of the weir in Los Alamos Canyon.

A composite understory vegetation sample was collected within the retention basin and submitted for radionuclide and inorganic element analyses in June 2019. Plants we collected include an unknown species of Brome grass (*Bromus sp.*), cheatgrass (*Bromus tectorum*), curly dock (*Rumex crispus*), kochia (*Bassia scoparia*), lambsquarters (*Chenopodium album*), little sagebrush (*Artemisia arbuscula*), common mullein (*Verbascum thapsus*), mustard species (*Brassicaceae sp.*), rubber rabbitbrush (*Ericameria nauseosa*), redtop (*Agrostis gigantea*), tarragon (*Artemisia dracunculus*), yellow salsify (*Tragopogon dubius*), yellow sweetclover (*Melilotus officinalis*), thistle species (*Asteraceae sp.*), and vetch (*Fabacea sp.*). Several inorganic elements were not detected in understory vegetation and all concentrations of elements were below the regional statistical reference levels (Table S7-10). Antimony, beryllium, selenium, and silver were found to be increasing over time (Kendall’s Tau, p < 0.05); however, the percentage of nondetects in these vegetation samples is high, and therefore these trends are likely to
be arbitrary. All other levels of inorganic elements in vegetation are not changing over time (Kendall’s Tau, p > 0.05).

Most radionuclides in understory vegetation were either not detected or were below the regional statistical reference levels (Table S7-11). Strontium-90 was detected (3.81 picocuries per gram) above the regional statistical reference level of 3.18 picocuries per gram, but the level was far below biota dose screening levels (Table S7-11). Americium-241 and plutonium-239/240 activities vary from year to year but are not increasing over time (Kendall’s Tau, p > 0.05; Figure 7-9). The high variability may be a result of disturbances due to soil excavation at the weir or due to sampling variability; plants are collected at different locations within the basin each year. In addition, because of high-runoff events and water ponding, the stems and leaves of the plants may retain different amounts of sediment each year; sediment on plant material can influence radionuclide results.

Figure 7-9. Americium-241 and plutonium-239/240 in understory vegetation collected on the upstream side (retention basin) of the Los Alamos Canyon weir from 2010 to 2019 compared with the biota dose screening level (red dashed line), and with the regional statistical reference level (green dashed line for americium-241 and gray dashed line for plutonium-239/240; the gray dashed line is underneath the green dashed line). Note the logarithmic scale on the vertical axis. Points represent true values; error bars are not available as only one sample was collected per year. Note: pCi/g = picocuries per gram.

Small mammals, such as wild mice, are ideal for monitoring chemicals and radionuclide exposures and uptake in biological systems because of their close contact with soil, burrowing behavior, and their omnivorous diets (Smith et al. 2002, Talmage and Walton 1991). Small mammals were collected from the retention basin in June 2019 using Sherman® live traps. All animal handling procedures were approved by LANL’s Institutional Animal Care and Use Committee. We captured one individual Mexican woodrat (Neotoma mexicana) for radionuclide analyses, one individual deer mouse and two individual western harvest mice (Reithrodontomys megalotis) for inorganic element analyses, and three individual deer mice for PCB congeners.
Most radionuclides in small mammals were either not detected or were below the regional statistical reference levels (Table S7-12). Plutonium-239/240 was detected (0.0179 picocuries per gram) above the regional statistical reference level of 0.0128 picocuries per gram and was also well below the biota dose screening level (Table S7-12). Strontium-90 was detected (3.43 picocuries per gram) above the regional statistical reference level of 0.432 picocuries per gram; however, it was far below the biota dose screening level (Table S7-12). Interestingly, strontium-90 activity in small mammals is decreasing over time from 2010 through 2019 (Kendall’s Tau, p < 0.05, Figure 7-10). No other radionuclides are changing over time.

Figure 7-10. Strontium-90 and plutonium-239/240 in small mammals collected on the upstream side (retention basin) of the Los Alamos Canyon weir from 2010 to 2019 compared with the biota dose screening level (red dashed line for plutonium-239/240 and purple dashed line for strontium-90), and with the regional statistical reference level (green dashed line for plutonium-239/240 and gray dashed line for strontium-90). Note the logarithmic scale on the vertical axis. Points represent true values; error bars are not available as only one sample was collected per year. Note: pCi/g = picocuries per gram.

Results of inorganic element analyses in whole-body small mammals are in Table S7-13. Many elements were detected in small mammals and concentrations of mercury and selenium slightly exceeded the regional statistical reference levels. Most inorganic elements were not changing over time; however, antimony, cadmium, silver, and zinc were increasing (Kendall’s Tau, p < 0.05). Zinc has shown an increasing trend in previous years that could suggest this is a true trend and not a result of environmental variability (Figure 7-11). Although zinc is increasing over time, the overall concentration is similar to or below the regional statistical reference level and thus is not of ecological concern. The increasing trends of antimony, cadmium, and silver are likely arbitrary as cadmium and silver were not detected in small mammals in 2019 and antimony was only detected in one of three individuals. These trends will continue to be monitored in the future.
Los Alamos National Laboratory | 2019 Annual Site Environmental Report

Figure 7-11. (A) Chromium and zinc and (B) PCB concentrations in individual whole-body mice samples collected upstream (in the retention basin) of the Los Alamos Canyon weir from 2010 to 2019 compared with the regional statistical reference level (mean plus 3 standard deviations of small mammals collected from background locations; green dashed line for zinc and PCBs; purple dashed line for chromium). Note vertical axis is a logarithmic scale for chromium and zinc and a linear scale for PCBs. Points represent true values or the mean when multiple results were available; error bars represent standard deviation. Note: mg/kg = milligrams per kilogram.

PCBs were detected in three deer mice collected upstream from the Los Alamos Canyon weir at concentrations of 0.018, 0.039, and 0.107 milligrams per kilogram. These values were higher than the regional statistical reference level of 0.013 milligrams per kilogram (Table S7-14). All concentrations observed here are 2 orders of magnitude below the lowest observable adverse effect level observed in mice (2.5 milligrams per kilogram) reported from PCB-contaminated sites where wild mouse populations were negatively affected (Batty et al. 1990). Thus, these levels are not expected to negatively affect the wild mouse population near the retention basin.

The levels of PCBs in small mammals collected from the upstream side of the retention basin are increasing over time (Kendall’s Tau, p < 0.05; Figure 7-11). The variability in PCB concentrations may be related to the removals of sediment from the basin between 2009 and 2014 and accumulation of sediment since that time.

Pajarito Canyon Flood-Retention Structure

The Pajarito Canyon flood-retention structure is located upstream of Technical Area 18. The structure extends 390 feet across the canyon and is about 70 feet high. The bottom of the retention structure is equipped with one 42-inch-diameter drainage culvert, which allows storm water to drain. Accumulated water is retained no longer than 96 hours behind the retention structure; water drains naturally into the existing streambed.

In June 2019, a composite understory vegetation sample was collected on the upstream side of the Pajarito Canyon flood-retention structure and analyzed for radionuclides and inorganic elements. Plants we collected include bottlebrush squirreltail (Elymus elymoides), cheatgrass (Bromus tectorum), curly dock (Rumex crispus), field bindweed (Convolvulus arvensis), Canadian horseweed (Erigeron canadensis), lambsquarters (Chenopodium album), common mullein (Verbascum thapsus), mustard species
(Brassicaceae sp.), orchardgrass (Dactylis glomerata), redtop (Agrostis gigantea), ryegrass (Lolium perenne), and yellow sweetclover (Melilotus officinalis). Results from analysis of the composite vegetation sample show that all radionuclides were either not detected or were below the regional statistical reference levels, and all radionuclide activities were below the biota dose screening level (Table S7-15). No trends over time in radionuclide activities in vegetation collected upstream of the Pajarito Canyon flood-retention structure were observed from 2009 to 2019 (Kendall’s Tau, p > 0.05).

Several inorganic elements were not detected in the composite vegetation sample, and all elements, except for lead, were below the regional statistical reference level (Table S7-16). Lead was detected in the vegetation sample at 1.90 milligrams per kilogram, which was slightly above the regional statistical reference level of 1.27 milligrams per kilogram, but is far below the levels that are considered toxic to plants (LeFebvre 2016). Beryllium and selenium were found to be increasing in vegetation over time (Kendall’s Tau, p < 0.05); however, the percentage (65–91 percent) of nondetects in these vegetation samples are high, and therefore these increasing trends are likely to be arbitrary.

Small mammals were also collected from the Pajarito Canyon flood-retention structure in June 2019. Small mammals were captured using Sherman® live traps. All animal handling procedures were approved by LANL’s Institutional Animal Care and Use Committee. We captured four brush mice (Peromyscus boylii) and one deer mouse that we composited for radionuclide analyses, one individual deer mouse and two individual western harvest mice were used for inorganic element analyses, and one deer mouse and two individual brush mice were used for PCB congener analysis.

Most radionuclides were either not detected or were below the regional statistical reference levels in the composite mouse sample (Table S7-17). Strontium-90 was observed at 0.629 picocuries per gram, which was above the regional statistical reference level of 0.432 picocuries per gram, but is well below the biota dose screening level and therefore not of ecological concern. Additionally, no radionuclides are changing over time (Kendall’s Tau, p > 0.05).

Most inorganic element concentrations in whole-body mice were detected and were below the regional statistical reference levels (Table S7-18). Chromium and zinc exceeded the regional statistical reference level in the deer mouse. Most inorganic elements in wild mice are not changing over time; however, in 2019, trends of increasing chromium and lead were observed and were consistent with 2018; zinc continues to increase over time (Kendall’s Tau, p < 0.05, Figure 7-12). As the majority of these constituents are below the regional statistical reference levels and because chromium and zinc are essential minerals, these observations are not of ecological concern. Trends over time will continue to be monitored.

PCBs were detected in all three individuals (Table S7-19) collected upstream of the Pajarito Canyon flood-retention structure. The deer mouse sample contained PCBs at a concentration of 0.0185 milligrams per kilogram, which was above the regional statistical reference level of 0.0129 milligrams per kilogram but is 2 orders of magnitude below the lowest observable adverse effect level observed in mice (2.5 milligrams per kilogram) reported from PCB-contaminated sites where wild mouse populations were negatively affected (Batty et al. 1990). Thus, the current PCB levels are not expected to negatively affect the wild mouse population near the retention basin. Additionally, PCB concentrations in whole-body wild mice collected upstream of the Pajarito Canyon flood-retention structure are not changing over time (Kendall’s Tau, p > 0.05; Figure 7-12).
Figure 7-12. (A) Zinc and (B) PCB concentrations in individual whole-body mouse samples collected upstream (in the retention basin) of the Pajarito Canyon flood-retention structure from 2009 to 2019 compared with the regional statistical reference level (mean plus 3 standard deviations of small mammals collected from background locations, green dashed line). Note the vertical axis is linear. Points represent the mean. Error bars represent standard deviation. Note: mg/kg = milligrams per kilogram.

Large Animal Monitoring

Monitoring Network

The environmental monitoring and surveillance program has opportunistically collected road-killed mule deer (*Odocoileus hemionus*) and elk (*Cervus canadensis*) from onsite, perimeter, and background sites since the 1970s (LASL 1973). To date, the program has collected and analyzed approximately 55 deer and 60 elk.

In 2015, the program expanded and began collecting other species including mountain lion (*Puma concolor*), bobcat (*Lynx rufus*), black bear (*Ursus americanus*), coyote (*Canis latrans*), gray fox, great horned owl (*Bubo virginianus*), western screech-owl (*Megascops kennicottii*), red-tailed hawk (*Buteo jamaicensis*), gopher snake (*Pituophis catenifer*), and more that were killed by vehicles or by other accidents.

In 2019, we collected seven mule deer, five elk, one American badger (*Taxidea taxus*), six gopher snakes, two common ravens (*Corvus corax*), one American kestrel (*Falco sparverius*), and one great horned owl from onsite, perimeter, and background locations (Figure 7-13). The majority of animals collected were casualties of vehicle strikes, although others came from different sources, such as hunter donations and animals that had died of electrocution or by drowning. Animal tissue samples were analyzed for concentrations of radionuclides, inorganic elements, PCBs, and some of the animals were analyzed for PFAS. Leg muscle and leg bone were harvested from the deer, elk, and badger; muscle was analyzed for radionuclides, inorganic elements, PCBs, and PFAS, and bone was analyzed for radionuclides. Unwashed whole-body birds (feathers included) and snakes were analyzed for all constituents.
Figure 7-13. Locations of animals collected opportunistically from within and around the Laboratory in 2019
Radionuclide Monitoring in Large Animals

Most radionuclides in deer and elk (muscle and bone) were either below the minimum detectable activity (most results) or below the regional statistical reference levels. Strontium-90 in one perimeter elk muscle sample (0.1030 picocuries per gram) exceeded the regional statistical reference level of 0.0746 picocuries per gram (Tables S7-20 and S7-21). Radionuclide levels are not changing over time in either deer or elk muscle or bone collected onsite. Levels are also not changing in muscle or bone in deer collected from perimeter locations (Kendall’s Tau, p > 0.05). Too few elk samples from perimeter locations were available for trend analyses (n = 2). These data are similar to previous years.

Most radionuclides in gopher snakes were not detected or were below the regional statistical reference level (Table S7-22). Tritium levels (2.73 and 8.21 picocuries per milliliter) in two gopher snakes collected onsite exceeded the regional statistical reference level of 2.13 picocuries per milliliter, but all levels of radionuclides were below the biota dose screening levels. However, the regional statistical reference level is based on a small sample size (n = 2) and more data from background locations are needed to make robust assessments.

All radionuclides were either not detected or were below the regional statistical reference level in the badger (Table S7-23). Most radionuclides in birds were not detected or were below the regional statistical reference levels (Table S7-23). Similar to gopher snakes, three birds collected onsite contained tritium levels (range 2.29 to 4.47 picocuries per milliliter) that were above the regional statistical reference level of 0.4481 picocuries per milliliter. The regional statistical reference level for birds is also based on a small sample size (n = 2), and more data from background locations are needed to make robust assessments. Levels of radionuclides observed in all animals were below the biota dose screening level, which is protective of biota.

Inorganic Elements in Large Animals

Most inorganic elements in deer were below the regional statistical reference levels. Aluminum, antimony, barium, cadmium, calcium, lead, manganese, nickel, and silver were higher than the regional statistical reference levels in one or more of the deer. All inorganic elements observed in elk, except for manganese in one elk, were below the regional statistical reference levels (Tables S7-24 and S7-25). Antimony is increasing in both deer and elk collected onsite (Kendall’s Tau, p < 0.05) and was above the regional statistical reference level. Currently there is no reliable lowest observable adverse effect level for antimony in ungulates. These trends will continue to be monitored. Silver is also increasing over time in deer collected onsite; however, silver was not detected in 86 percent of samples, and nondetects could be affecting this observation. Zinc is increasing in deer collected from perimeter locations (Kendall’s Tau, p < 0.05); however, the majority of samples contain zinc concentrations that are below the regional statistical reference level and thus are not of concern. Too few elk samples are available from perimeter locations to conduct trend analyses of inorganic elements (n = 4).

Several inorganic elements were not detected in gopher snakes and most detections were below the regional statistical reference levels (Table S7-26). Iron concentrations in two snakes (90 and 112 milligrams per kilogram) were detected above the regional statistical reference level of 69 milligrams per kilogram. In birds, one raven and the great horned owl contained levels of iron, magnesium, manganese, silver, and/or vanadium that were above the regional statistical reference level (Table S7-27). However, as many of these elements are essential elements, they are unlikely to cause adverse effects to the population level at the concentrations observed here. Additionally, as previously
mentioned, the regional statistical reference levels for these groups of animals are based on small sample sizes, and more data are needed to make robust assessments. Inorganic element analyses were requested on the badger; however, the sample was inadvertently ashed for radionuclide analyses before inorganic element analyses. The analyses were not conducted following the ashing as we need inorganic element results reported on a wet weight basis for meaningful comparisons.

PCB Monitoring in Large Animals

PCBs were detected in all animal samples. Deer PCB concentrations ranged from 0.000016 to 0.000734 milligrams per kilogram and elk concentrations ranged from 0.0000067 to 0.00048 milligrams per kilogram; most concentrations were above the regional statistical reference levels of 0.000017 and 0.000021 milligrams per kilogram, respectively (Tables S7-28 and S7-29). Our observations in both deer and elk are well below the U.S. Food and Drug Administration standard of 3 milligrams per kilogram for red meat consumption by humans (U.S. Food and Drug Administration 1987). Total PCBs are not changing over time in deer or elk muscle collected onsite or in deer muscle collected from perimeter locations (Kendall’s Tau, p > 0.05). Too few elk samples from perimeter locations were available for trend analyses (n = 3).

PCBs were detected in all gopher snakes and ranged from 0.000793 to 0.00271 milligrams per kilogram and all were above the regional statistical reference of 0.000474 milligrams per kilogram (Table S7-30). In birds, PCBs ranged from 0.024 to 0.642 milligrams per kilogram and all, except for the great horned owl, were below the regional statistical reference level of 0.1001 milligrams per kilogram (Table S7-31). PCB concentrations are typically higher in predator species, such as the owls reported here, because these organic chemicals are lipophilic (absorbed by fats) and increase in concentration in animals that eat other animals (Eisler and Belisle 1996, Hornbuckle et al. 2006). The lowest observable adverse effect level of PCBs is between 1 and 30 milligrams per kilogram in avian eggs and 2 to 4 milligrams per kilogram in avian adult plasma (Harris and Elliott 2011). All levels observed here are well below the lowest observable adverse effect level for birds. The total PCB concentrations in all animals monitored and reported here are overall quite low, and while there are not specific lowest observable adverse effect levels of PCBs for deer, elk, snakes, and badgers, adverse effects in other animals are not observed until concentrations are above 1 milligram per kilogram (Batty et al. 1990, Harris and Elliott 2011).

Per- and Polyfluoroalkyl Substances Monitoring in Large Animals

A total of 14 animal tissue samples were analyzed for 14 PFAS compounds. Samples collected onsite include one American kestrel, two common ravens, one great horned owl, four gopher snakes, and three mule deer. Samples collected from background locations include two gopher snakes and one elk. The majority of PFAS (14 chemicals analyzed in the 14 samples) were not detected (88 percent) in biological samples and nearly half of the samples did not contain any detectable concentrations of PFAS. Perfluorooctanesulfonic acid was the most commonly detected PFAS among animals; bird species had the greatest frequency of detections compared with snakes or ungulates (Tables S7-32 through S7-34). Three of the six snakes (two from onsite and one from background) contained only perfluorooctanesulfonic acid. Onsite snakes contained 1.65 to 1.97 nanograms per gram and the background snake contained 0.60 nanograms per gram. In ungulates, two deer from onsite and the elk from background did not contain any detectable levels of PFAS. One deer collected at LANL contained 0.40 nanograms per gram of perfluorohexanoic acid.
The bird species contained the greatest frequency of detects ranging from three to eight PFAS per individual. All birds contained perfluorooctanesulfonic acid at levels that ranged from 1.97 to 6.34 nanograms per gram. The American kestrel and one of the common ravens also contained detectable concentrations of perfluorooctanoic acid (0.37 and 0.93 nanograms per gram, respectively) and perfluorohexanesulfonic acid (0.55 and 3.35 nanograms per gram, respectively). At this time, there is no data available on PFAS levels in birds from background locations.

The highest concentrations and the greatest frequency of detects were observed in the common raven (n = 8) and could be explained by diet. Common ravens are omnivores and consume garbage, which could contain fast food wrappers manufactured with PFAS. The great horned owl (n = 5) also contained a higher number of detections of PFAS when compared with other species. This observation may also be explained by diet. Some PFAS are known to bioaccumulate and biomagnify in the food chain; therefore, a top predator, such as the great horned owl, could have greater concentrations when compared with species lower on the food chain.

Some detections of PFAS in biological samples may be explained by false positives, which is when the test results indicate PFAS are present in a sample when they actually are not. As PFAS have such low concentrations for their detection limits and due to their prevalence in common consumer products, false positive detection can occur during investigations. The bird and snake samples, for example, were collected and submitted as whole-body samples and therefore could have had external PFAS contamination from the road or from the vehicle that struck it. Muscle tissue was collected from deer and elk samples and overall had fewer detections than bird and snake samples. Collecting internal tissues from all animals may reduce or eliminate potential false positives from external sources and provide data that are more comparable.

Our observations are within the ranges of PFAS concentrations observed in animal tissues from published studies, including studies that occurred away from point source pollution and in the Antarctic where global fallout is the primary source of PFAS in the environment (Aas et al. 2014, Bossi et al. 2015). As PFAS are recently emerging chemicals of concern, little is known about wildlife tissue concentrations and their relation to adverse effects. Long-term monitoring around the site could help determine whether Laboratory operations are affecting PFAS chemicals in biological tissues, as well as monitoring at background locations to allow for comparisons.

BIOLOGICAL RESOURCES MANAGEMENT PROGRAM

We monitor migratory bird species and federally listed threatened or endangered species, and provide guidelines and requirements for Laboratory operations to protect these species and comply with laws and regulations.

Breeding Season Bird Capture and Banding at the Sandia Wetlands

We have been operating a bird banding station in the Sandia Canyon wetlands since 2014. This wetlands contains primarily broadleaf cattail (Typha latifolia), lanceleaf cottonwood (Populus acuminata), narrowleaf willow (Salix exigua), and Russian olive (Elaeagnus angustifolia) (N3B 2019). The purpose of the study is to monitor the species, age, breeding status, and return rates of songbirds using the area around the wetlands.
Beginning in May each year, we operate the bird banding station following a protocol called Monitoring Avian Productivity and Survivorship (DeSante 1992) administered by the Institute for Bird Populations. Use of the Monitoring Avian Productivity and Survivorship protocol is a continent-wide collaborative effort among public agencies, nongovernmental groups, and individuals. Following a standard protocol where methods are the same at every site provides data that can be compared among sites.

During banding sessions, we deploy 12 mist nets that are 12-meters long with 30-millimeter mesh webbing in and around the wetlands. A standard U.S. Fish and Wildlife Service numbered band is put on each captured bird. All birds are identified, aged, sexed, weighed, measured, fat scored, and checked for signs of molt. We use the aging and sexing criteria provided in Pyle (1997).

A total of 1,311 birds representing 72 species were captured during the breeding seasons of 2014 through 2019. In 2019 alone, we captured 217 birds representing 34 species. The most commonly captured bird at this site is the song sparrow (Melospiza melodia). The second most commonly captured species in 2019 was the spotted towhee (Pipilo maculatus). The Sandia wetlands support numerous species of breeding birds, including species of conservation concern.

Data from 2014–2019 were analyzed for population and community changes (Stanek et al. 2020). The overall numbers of birds and species captured were variable among years. We did not see any decreases in bird species diversity, abundance, or the percentage of birds breeding during the study period. We also did not see a declining population trend for the top 10 most-captured species or for any of the species of conservation concern over time. Our recapture rates for adults in successive years at the Sandia wetlands are low when compared with estimated adult survival in migratory passerines from peer-reviewed literature (Stanek et al. 2020). We need more years of data to make robust conclusions about population trends through time.

Fall Bird Migration Capture and Banding at Pajarito Wetlands

Biologists at the Laboratory also document fall migration patterns of birds on Laboratory property. During the fall of 2019, we completed the tenth year of monitoring fall migration songbirds. Songbirds were captured at a mist-netting station located in a wetland and riparian complex in Technical Area 36 on the north side of Pajarito Road.

The fall banding station used 14 mist nets that were 12-meters long with 30-millimeter mesh. After a bird was extracted from the mist net, a standard U.S. Fish and Wildlife Service numbered band was put on each bird. All birds were identified, aged, sexed, weighed, measured, fat scored, and checked for signs of molt. The aging and sexing criteria were based on Pyle (1997).

In 2019, 1,375 birds representing 51 species were banded. The number of nets and banding days in 2019 did not change from previous years, yet the number of birds banded was almost three times the previous highest total, which was 474 in 2010. The number of birds banded was unprecedented and the reasons for the increase are unclear. There were 482 chipping sparrows (Spizella passerina) captured in 2019, which alone is higher than the previous best year with all species combined. Other seed eaters were also unusually high in number such as the lesser goldfinch (Spinus psaltria), Brewer’s sparrow (Spizella breweri), Lincoln’s sparrow (Melospiza lincolnii), and house finch (Haemorhous mexicanus). Aerial insectivores such as the ruby-crowned kinglet (Regulus calendula), orange-crowned warbler (Leiothlypis celata), and Virginia’s warbler (Leiothlypis virginiae) were also captured in increased numbers. Capture rates at another local bird banding station at Bandelier National Monument were not
elevated as observed at the LANL station (unpublished data). More years of data are required to determine if this was an unusual eruptive bird year or if numbers are starting to climb overall.

Threatened and Endangered Species Surveys

In 2019, surveys were completed for three species protected under the Endangered Species Act—the Mexican spotted owl (*Strix occidentalis lucida*), southwestern willow flycatcher (*Empidonax trailii extimus*), and Jemez Mountains salamander (*Plethodon neomexicanus*).

Mexican spotted owl

The Mexican spotted owl generally inhabits mixed conifer, ponderosa pine (*Pinus ponderosa*), and gambel oak (*Quercus gambelii*) forests in mountains and canyons (U.S. Fish and Wildlife Service 2012). Mexican spotted owls in the Jemez Mountains of northern New Mexico prefer cliff faces in canyons for their nest sites (Johnson and Johnson 1985).

Under the Laboratory's Threatened and Endangered Species Habitat Management Plan, Mexican spotted owl habitat has been identified based on a combination of cliff habitat and forest characteristics (LANL 2017b). Mexican spotted owl habitats are called areas of environmental interest at LANL. Currently, there are five Mexican spotted owl areas of environmental interest at the Laboratory that span seven canyons.

Surveys for breeding Mexican spotted owls are conducted every year in all areas of environmental interest. In 2019, we detected Mexican spotted owls in the Mortandad-Sandia and Threemile Canyon areas of environmental interest. These two sites have had Mexican spotted owls in previous years (Thompson et al. 2019).

Southwestern willow flycatcher

The Southwestern willow flycatcher is found in close association with dense stands of willows, arrowweed (*Pluchea* sp.), buttonbush (*Cephalanthus occidentalis*), tamarisk (*Tamarix*), Russian olive, and other riparian vegetation, often with a scattered overstory of cottonwood (U.S. Fish and Wildlife Service 2002).

Under the Laboratory's Threatened and Endangered Species Habitat Management Plan, southwestern willow flycatcher habitat has been identified based on the presence of riparian habitat with suitable wetland vegetation (LANL 2017b). There is only one area of environmental interest for the southwestern willow flycatcher at the Laboratory, located in the bottom of Pajarito Canyon. The survey results in 2019 were all negative for the southwestern willow flycatcher (Thompson et al. 2019).

Jemez Mountains salamander

Under the Laboratory's Threatened and Endangered Species Habitat Management Plan, Jemez Mountains salamander habitat has been identified based on a geographical information systems analysis
and a field-validated inspection of suitable habitat components (LANL 2017b). Currently, there are five Jemez Mountains salamander areas of environmental interest at the Laboratory that span four canyons. Surveys are conducted when suitable environmental conditions are met. Surveys were only conducted in one of the Los Alamos Canyon areas of environmental interest in 2019 due to suitable environmental conditions existing for a short window of time. Surveys were negative for the Jemez Mountains salamander (Thompson et al. 2019).

Bird Monitoring at Open Detonation and Open Burning Firing Sites

An annual bird population monitoring program was started in 2013 as part of a Resource Conservation and Recovery Act permitting process for two open detonation firing sites and one open burning site. Open detonation sites are locations at the Laboratory where explosives are set off. The open burning site is a facility where materials are ignited for self-sustained combustion (for example, to remove residues of high explosives). The two open detonation sites included in the permitting process are Technical Area 36 (Minie) and Technical Area 39 Point 6; the open burning site is the Technical Area 16 Burning Ground. Together these are referred to as the treatment sites (Hathcock and Fair 2013; Hathcock 2014; 2015; Hathcock et al. 2017; 2018, 2019). The ongoing objective of the population monitoring is to determine whether Laboratory operations at these sites impact bird species richness (the number of different species present), species diversity (a combination of the number of species present and their relative abundance), or composition (the presence or absence of each individual species).

Biologists at the Laboratory use point count methodology to record the birds present along transects at the three treatment sites and compare the results to surveys conducted in similar habitat types in less developed areas (control sites). Summer surveys provide information about which birds are breeding at each site. The habitat type at Technical Area 36 (Minie) and Technical Area 39 is a two-needle piñon pine (*Pinus edulis*) and one-seed juniper woodland habitat referred to as piñon-juniper. The habitat type at Technical Area 16 is a ponderosa pine forested habitat referred to as ponderosa pine.

A total of 853 birds representing 53 species were recorded at the three treatment sites combined in 2019 (Hathcock et al. 2020). The species richness and diversity at the treatment sites were not statistically different from their associated controls. Rarefaction and extrapolation plots for 2013 through 2018 suggest that over time the species diversity was statistically different between treatments and controls, although the diversity was higher at the treatment sites than the control sites. Avian abundance showed more variability, but treatment and controls have the same trends year to year.

During the 2019 nesting season, 15 nest boxes at each treatment site were actively monitored. The overall avian nest box network, excluding the three treatment sites, contained 378 nest boxes in 2019. Of those, 167 contained active nests and 85 of those nests fledged young successfully. This was an overall occupancy rate of 44 percent with a 51 percent success rate. In 2019, there were four successful nests that fledged young at Technical Area 36 (Minie), zero at Technical Area 39, and seven at Technical Area 16. Both occupancy and success rates at Technical Area 39 were low in comparison with the other treatment sites and the overall network. Technical Area 39 is the lowest elevation treatment site and occupancy has been decreasing over time at both this site and other areas of the avian nest box network at a similar elevation. Wysner et al. (2019) found that western bluebirds, one of the target species of the network, have increased the elevation they select for nesting over time in the study area, which may be affecting use of the lower-elevation sites. Occupancy and success rates at the other two
treatment sites seem to be fluctuating in the same manner as the overall network and have not displayed a decreasing trend over time.

The results from 2019 continue to indicate that operations at the three treatment sites are not negatively affecting bird populations.

BIOTA RADIATION DOSE ASSESSMENT

Introduction

The purpose of the biota radiation dose assessment is to ensure that plant and animal populations are protected from the effects of Laboratory absorbed radioactive materials as required by DOE Order 458.1. This assessment follows the guidance of the DOE standard, “A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota” (DOE 2019), and uses the DOE dose calculation program, RESRAD-BIOTA version 1.8.

Previous biota dose assessments were reported in the Annual Site Environmental Reports and concluded that biota doses for populations at the Laboratory are well below the DOE limits of 1 rad/day for terrestrial plants and aquatic animals and 0.1 rad/day for terrestrial animals (DOE 2019).

Plants receive doses from external radiation and receive internal doses from radionuclides taken up through their roots, which in some cases penetrate material buried in material disposal areas. Animals also receive external dose, and in addition, receive internal dose when they eat the plants. When a predator eats its prey, there is a possibility for bioaccumulation as the ingested material passes up the food chain. Bioaccumulation is accounted for by introducing “bioaccumulation factors” or “concentration ratios,” which are the ratios of the radionuclides in living tissue to the concentrations in the underlying soil or water.

The well-established concentration ratios provide the option of calculating estimates of the levels in living tissue from the measured levels in soil. Alternatively, the concentration ratios can be used to calculate estimates of the levels in soil from measured levels in biota tissue. The comparison of these two methods shows that in most cases, results calculated using the concentration ratios are conservative overestimates of dose.

The biota doses reported below are calculated using site-representative values as described in Appendix F of DOE-STD-1153-2019 (DOE 2019). Whenever the data allow alternative calculations of the dose from either soil or tissue data, the largest dose is reported.

The material potentially contributing to the biota doses at the Laboratory is legacy waste material. Ongoing remediation and radioactive decay result in decreasing concentrations, so a generally decreasing trend in biota doses is expected. However, ongoing operations and movement of soil or sediment may cause an accumulation of radioactive material, so key locations are re-assessed annually.

What is a rad?

“Rad” is an acronym for radiation absorbed dose. A dose of 1 rad means that 1 gram of material absorbed 100 erg of energy as a result of exposure to ionizing radiation. One rad is the same as 0.01 gray. Different materials that receive the same exposure may not absorb the same amount of radiation.
Mesa-Top Facilities

Area G

This chapter reports new measurements of soil and vegetation around Material Disposal Area G, known as “Area G.” The results are generally comparable with previous years, although there is some year-to-year variation depending on the exact locations sampled. This year-to-year variation can be seen in the trend graphs of this chapter. As recommended by DOE-STD-1153-2019 (DOE 2019), this assessment uses the highest measured concentrations, and the resulting doses are reported in Tables 7-1 and 7-2.

Table 7-1. Dose to Terrestrial Animals at Area G for 2019
DOE Limit: 0.1 rad/day for Terrestrial Animals

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>External</th>
<th>Internal</th>
<th>Nuclide Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water</td>
<td>Soil</td>
<td>Water</td>
</tr>
<tr>
<td></td>
<td>(rad/day)</td>
<td>(rad/day)</td>
<td>(rad/day)</td>
</tr>
<tr>
<td>Am-241</td>
<td>5.7E-10</td>
<td>5.7E-06</td>
<td>1.9E-07</td>
</tr>
<tr>
<td>Cs-137</td>
<td>3.0E-08</td>
<td>3.0E-05</td>
<td>2.2E-07</td>
</tr>
<tr>
<td>H-3</td>
<td>1.1E-04</td>
<td>2.2E-04</td>
<td>2.2E-04</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2.0E-10</td>
<td>8.0E-07</td>
<td>4.2E-07</td>
</tr>
<tr>
<td>Pu-239</td>
<td>8.7E-11</td>
<td>3.5E-07</td>
<td>3.1E-07</td>
</tr>
<tr>
<td>Sr-90</td>
<td>1.4E-07</td>
<td>8.5E-06</td>
<td>8.9E-06</td>
</tr>
<tr>
<td>U-234</td>
<td>7.3E-09</td>
<td>7.3E-07</td>
<td>5.5E-06</td>
</tr>
<tr>
<td>U-235</td>
<td>1.8E-08</td>
<td>1.8E-06</td>
<td>4.5E-07</td>
</tr>
<tr>
<td>U-238</td>
<td>5.6E-07</td>
<td>5.6E-05</td>
<td>5.3E-06</td>
</tr>
<tr>
<td>Medium Total</td>
<td>1.1E-04</td>
<td>3.2E-04</td>
<td>2.4E-04</td>
</tr>
</tbody>
</table>

Table 7-2. Dose to Terrestrial Plants at Area G for 2019
DOE Limit 1.0 rad/day for Terrestrial Plants

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>External</th>
<th>Internal</th>
<th>Nuclide Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water</td>
<td>Soil</td>
<td>(rad/day)</td>
</tr>
<tr>
<td></td>
<td>(rad/day)</td>
<td>(rad/day)</td>
<td></td>
</tr>
<tr>
<td>Am-241</td>
<td>5.7E-10</td>
<td>5.7E-06</td>
<td>8.4E-05</td>
</tr>
<tr>
<td>Cs-137</td>
<td>3.0E-08</td>
<td>3.0E-05</td>
<td>1.9E-06</td>
</tr>
<tr>
<td>H-3</td>
<td>1.1E-04</td>
<td>2.2E-04</td>
<td>2.3E-04</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2.0E-10</td>
<td>8.0E-07</td>
<td>9.0E-05</td>
</tr>
<tr>
<td>Pu-239</td>
<td>8.7E-11</td>
<td>3.5E-07</td>
<td>9.7E-05</td>
</tr>
<tr>
<td>Sr-90</td>
<td>1.4E-07</td>
<td>8.5E-06</td>
<td>3.4E-05</td>
</tr>
<tr>
<td>U-234</td>
<td>7.3E-09</td>
<td>7.3E-07</td>
<td>2.1E-05</td>
</tr>
<tr>
<td>U-235</td>
<td>1.8E-08</td>
<td>1.8E-06</td>
<td>1.7E-06</td>
</tr>
<tr>
<td>U-238</td>
<td>5.6E-07</td>
<td>5.6E-05</td>
<td>2.0E-05</td>
</tr>
<tr>
<td>Medium Total</td>
<td>1.1E-04</td>
<td>3.2E-04</td>
<td>5.8E-04</td>
</tr>
</tbody>
</table>

At Area G, the largest dose contribution is from tritium, which is mostly concentrated near the southern edge of Area G, at locations 29-03 and 30-1 (Figure 7-1). The results in Table 7-1 show that the biota doses at Area G are well below the DOE limits of 0.1 rad/day for animals, and Table 7-2 shows the doses...
are also below the limit of 1 rad/day for plants. Overall, there are no measurable impacts to biota health.

Dual-Axis Radiographic Hydrodynamic Test Facility

The Dual-Axis Radiographic Hydrodynamic Test Facility biota dose assessment uses the same methods described in the previous section. The largest doses were calculated from the soil data, indicating that the tissue-to-soil concentration ratios are overestimates, as discussed above. The largest soil activities were entered into RESRAD-BIOTA, and the results are reported in Tables 7-3 and 7-4.

Table 7-3. Dose to Terrestrial Animals at Dual-Axis Radiographic Hydrodynamic Test Facility for 2019 DOE Limit: 0.1 rad/day for Terrestrial Animals

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>External</th>
<th>Internal</th>
<th>Nuclide Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water (rad/day)</td>
<td>Soil (rad/day)</td>
<td>Water (rad/day)</td>
</tr>
<tr>
<td>Am-241</td>
<td>1.1E-12</td>
<td>1.8E-08</td>
<td>3.6E-10</td>
</tr>
<tr>
<td>Cs-137</td>
<td>9.0E-09</td>
<td>1.1E-05</td>
<td>6.5E-08</td>
</tr>
<tr>
<td>H-3</td>
<td>1.1E-07</td>
<td>2.1E-07</td>
<td>2.1E-07</td>
</tr>
<tr>
<td>Pu-238</td>
<td>1.2E-12</td>
<td>2.3E-09</td>
<td>2.5E-09</td>
</tr>
<tr>
<td>Pu-239</td>
<td>6.8E-13</td>
<td>5.5E-09</td>
<td>2.4E-09</td>
</tr>
<tr>
<td>Sr-90</td>
<td>6.0E-08</td>
<td>1.5E-05</td>
<td>3.7E-06</td>
</tr>
<tr>
<td>U-234</td>
<td>2.2E-08</td>
<td>2.4E-06</td>
<td>1.6E-05</td>
</tr>
<tr>
<td>U-235</td>
<td>6.2E-08</td>
<td>3.8E-06</td>
<td>1.6E-06</td>
</tr>
<tr>
<td>U-238</td>
<td>9.9E-06</td>
<td>4.4E-04</td>
<td>9.5E-05</td>
</tr>
<tr>
<td>Medium Total</td>
<td>1.0E-05</td>
<td>4.7E-04</td>
<td>1.2E-04</td>
</tr>
</tbody>
</table>

Table 7-4. Dose to Terrestrial Plants at Dual-Axis Radiographic Hydrodynamic Test Facility for 2019 DOE Limit: 1.0 rad/day for Terrestrial Plants

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>External</th>
<th>Internal</th>
<th>Nuclide Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water (rad/day)</td>
<td>Soil (rad/day)</td>
<td>Soil (rad/day)</td>
</tr>
<tr>
<td>Am-241</td>
<td>1.1E-12</td>
<td>1.8E-08</td>
<td>2.6E-07</td>
</tr>
<tr>
<td>Cs-137</td>
<td>9.0E-09</td>
<td>1.1E-05</td>
<td>6.7E-07</td>
</tr>
<tr>
<td>H-3</td>
<td>1.1E-07</td>
<td>2.1E-07</td>
<td>2.2E-07</td>
</tr>
<tr>
<td>Pu-238</td>
<td>1.2E-12</td>
<td>2.3E-09</td>
<td>2.6E-07</td>
</tr>
<tr>
<td>Pu-239</td>
<td>6.8E-13</td>
<td>5.5E-09</td>
<td>1.5E-06</td>
</tr>
<tr>
<td>Sr-90</td>
<td>6.0E-08</td>
<td>1.5E-05</td>
<td>6.0E-05</td>
</tr>
<tr>
<td>U-234</td>
<td>2.2E-08</td>
<td>2.4E-06</td>
<td>6.8E-05</td>
</tr>
<tr>
<td>U-235</td>
<td>6.2E-08</td>
<td>3.8E-06</td>
<td>3.6E-06</td>
</tr>
<tr>
<td>U-238</td>
<td>9.9E-06</td>
<td>4.4E-04</td>
<td>1.6E-04</td>
</tr>
<tr>
<td>Medium Total</td>
<td>1.0E-05</td>
<td>4.7E-04</td>
<td>2.9E-04</td>
</tr>
</tbody>
</table>

The largest dose contribution is from uranium, most of which is the result of Laboratory operations. The activities of the other radionuclides are consistent with natural background and global fallout.
CHAPTER 7 – ECOSYSTEM HEALTH

Tables 7-3 and 7-4 show that the biota doses are well below the DOE limits of 0.1 rad/day for animals and 1 rad/day for plants. There are no measurable impacts to biota health.

Sediment Retention Sites in Canyons

Los Alamos Canyon Weir

The Los Alamos Canyon weir receives drainage from legacy materials at Technical Areas 01, 02, and 21. The soil and sediment trapped by the weir include slightly elevated activities of fission products (Cs-137 and Sr-90) and transuranics (americium and plutonium). The largest doses were from natural uranium.

As shown in Tables 7-5 and 7-6, the doses are all less than 0.1 percent of the DOE limits.

Table 7-5. Dose to Terrestrial Animals in Los Alamos Canyon Weir for 2019

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>External</th>
<th>Internal</th>
<th>Nuclide Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water (rad/day)</td>
<td>Soil (rad/day)</td>
<td>Water (rad/day)</td>
</tr>
<tr>
<td>Am-241</td>
<td>2.6E-11</td>
<td>2.6E-07</td>
<td>8.6E-09</td>
</tr>
<tr>
<td>Cs-137</td>
<td>1.6E-08</td>
<td>1.6E-05</td>
<td>1.2E-07</td>
</tr>
<tr>
<td>H-3</td>
<td>7.8E-08</td>
<td>1.6E-07</td>
<td>1.5E-07</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2.0E-12</td>
<td>8.0E-09</td>
<td>4.2E-09</td>
</tr>
<tr>
<td>Pu-239</td>
<td>2.4E-11</td>
<td>9.7E-08</td>
<td>8.5E-08</td>
</tr>
<tr>
<td>Sr-90</td>
<td>4.7E-08</td>
<td>2.8E-06</td>
<td>3.0E-06</td>
</tr>
<tr>
<td>U-234</td>
<td>3.4E-09</td>
<td>3.4E-07</td>
<td>2.5E-06</td>
</tr>
<tr>
<td>U-235</td>
<td>7.3E-09</td>
<td>7.3E-07</td>
<td>1.8E-07</td>
</tr>
<tr>
<td>U-238</td>
<td>2.0E-07</td>
<td>2.0E-05</td>
<td>1.9E-06</td>
</tr>
<tr>
<td>Medium Total</td>
<td>3.5E-07</td>
<td>4.1E-05</td>
<td>7.9E-06</td>
</tr>
</tbody>
</table>

Table 7-6. Dose to Terrestrial Plants in Los Alamos Canyon Weir for 2019

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>External</th>
<th>Internal</th>
<th>Nuclide Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water (rad/day)</td>
<td>Soil (rad/day)</td>
<td>Soil (rad/day)</td>
</tr>
<tr>
<td>Am-241</td>
<td>2.6E-11</td>
<td>2.6E-07</td>
<td>3.8E-06</td>
</tr>
<tr>
<td>Cs-137</td>
<td>1.6E-08</td>
<td>1.6E-05</td>
<td>1.0E-06</td>
</tr>
<tr>
<td>H-3</td>
<td>7.8E-08</td>
<td>1.6E-07</td>
<td>1.7E-07</td>
</tr>
<tr>
<td>Pu-238</td>
<td>2.0E-12</td>
<td>8.0E-09</td>
<td>9.0E-07</td>
</tr>
<tr>
<td>Pu-239</td>
<td>2.4E-11</td>
<td>9.7E-08</td>
<td>2.7E-05</td>
</tr>
<tr>
<td>Sr-90</td>
<td>4.7E-08</td>
<td>2.8E-06</td>
<td>1.1E-05</td>
</tr>
<tr>
<td>U-234</td>
<td>3.4E-09</td>
<td>3.4E-07</td>
<td>9.5E-06</td>
</tr>
<tr>
<td>U-235</td>
<td>7.3E-09</td>
<td>7.3E-07</td>
<td>7.0E-07</td>
</tr>
<tr>
<td>U-238</td>
<td>2.0E-07</td>
<td>2.0E-05</td>
<td>7.2E-06</td>
</tr>
<tr>
<td>Medium Total</td>
<td>3.5E-07</td>
<td>4.1E-05</td>
<td>6.1E-05</td>
</tr>
</tbody>
</table>
Pajarito Canyon Flood-Retention Structure

The Pajarito Canyon flood-retention structure does not receive significant quantities of LANL radionuclides. During 2019, any contribution from DOE operations was indistinguishable from background. The total biota dose in Pajarito Canyon is much less than 1 percent of the DOE limits and has no measurable impact on biota health.

Animals at Other Locations

At other locations, roadkilled animals provide information about the presence of radioactive material within their home ranges.

Measurements of radioactive materials in large animals are reported in Tables S7-20 (deer), S7-21 (elk), S7-22 (snakes), and S7-23 (birds and badger). The concentration of tritium in a snake near Area G was above background but below the concentrations used for the assessment of Table 7-1. The doses are much less than 1 percent of the DOE limits, and there is no measurable impact to the health of these animals from radioactive material.

Conclusion

Previous biota dose assessments have shown that biota doses at LANL are far below the DOE limits. This 2019 assessment confirms the previous assessments and shows that there are no harmful effects to the health of biota populations at LANL.

QUALITY ASSURANCE

The Soil, Foodstuffs, and Biota Program collects samples according to written, standard quality assurance and quality control procedures and protocols. These procedures and protocols are identified in the Laboratory’s *Implementation of the Soil, Foodstuffs, and Biota Program, Quality Assurance Project Plan* (EPC-ES-QAPP-001) and in the following Laboratory procedures:

- **Soil and Vegetation Sampling for the Environmental Surveillance Program** (EPC-ES-TP-003)
- **Soil and Vegetation Sampling at Facility Sites** (EPC-ES-TP-006)
- **Soil Sampling for Land Transfer and Conveyance and Other Special Projects** (EPC-ES-TP-017)
- **Produce Sampling** (EPC-ES-TP-004)
- **Road Kill Sampling** (EPC-ES-TP-007)
- **Crayfish Sampling** (EPC-ES-TP-008)
- **Benthic Macroinvertebrate Sampling** (EPC-ES-TP-013)
- **Fish Sampling** (EPC-ES-TP-005)
- **Managing and Sampling Honey Bee Hives** (EPC-ES-TP-219)
- **Live Trapping of Small Mammals** (EPC-ES-TP-201)
- **Sediment Sampling in Reservoirs and Rivers** (EPC-ES-TP-035)
- **General PFAS Sampling Guidance for the Soil, Foodstuffs, and Biota Program** (EPC-ES-GUIDE-015)

The Soil, Foodstuffs, and Biota Program collects biological samples under approved New Mexico Game and Fish Scientific Collection Permits as well as approved Institutional Animal Care and Use Committee protocols.

In addition, procedures and protocols for biota dose assessment can be found in the *Technical Project Plan for Biota Dose Assessment* (EPC-ES-TPP-002).
These procedures ensure that the collection, processing, and chemical analysis of samples; the validation and verification of data; and the tabulation of analytical results are conducted in a consistent manner from year to year. Locations and samples have unique identifiers to provide chain-of-custody control from the time of collection through analysis and reporting.

The Biological Resources Program collects field data according to written quality control procedures.

- **Institutional Animal Care and Use Committee Operations** (EPC-ES-AP-014)
- **Threatened and Endangered Species Surveys** (EPC-ES-TP-203)
- **Avian Monitoring** (EPC-ES-TP-205)

In addition to these procedures, some parts of our work require federal and state permits. These permits are individual permits and not institutional. Personnel working as wildlife biologists at LANL must have the training and background to be able to obtain such permits.

- Federal bird banding permits issued by the U.S. Geological Survey’s bird banding laboratory
- Federal recovery permits to survey or handle federally listed species issued by the U.S. Fish and Wildlife Service
- State permits for scientific research issued by the New Mexico Department of Game and Fish
- Surveys for federally listed species follow specific protocols set forth by the U.S. Fish and Wildlife Service and training to these protocols is a prerequisite to obtaining a permit.

The Health Physics program calculates dose to nonhuman biota according to a written quality control procedure.

- **Calculating Dose to Nonhuman Biota** (EPC-ES-TP-001)

Field Sampling Quality Assurance

Overall quality of field sampling is maintained through the rigorous use of carefully documented procedures, listed above, which govern all aspects of the sample collection program.

Samples are collected under full chain-of-custody procedures to minimize the chances of data transcription errors. Once collected, samples are hand-delivered to the Laboratory’s Sample Management Office, which ships the samples via express mail directly to an external analytical laboratory under full chain-of-custody control. Sample Management Office personnel track all samples. Upon receipt of data from the analytical laboratory (electronically and in hard copy), the completeness of the field sample process and other variables is assessed. A quality assessment document is created, attached to the data packet, and provided in the data package. Field data completeness for sample collection in 2019 was 100 percent.

Analytical Laboratory Quality Assessment

In 2019, ALS in Fort Collins, Colorado, inadvertently ashed an American badger muscle sample for radionuclide analyses before it underwent inorganic element analyses. As inorganic element concentrations reported on an ash weight do not allow for comparisons with current monitoring data, we did not request the lab to proceed with inorganic analyses. In total, we lost inorganic results from one sample in 2019 due to laboratory error.
REFERENCES

Chapter 8 – PUBLIC DOSE AND RISK ASSESSMENT

U.S. Department of Energy regulations limit the total annual radiological dose to the public from Los Alamos National Laboratory (LANL, or the Laboratory) operations to 100 millirem. Furthermore, doses must be as low as reasonably achievable and must not exceed 25 millirem from any one exposure pathway. The annual dose received by the public from airborne emissions of radionuclides is limited by Clean Air Act regulations to 10 millirem.

The objective of this chapter is to use environmental sampling data collected from air, water, soil, and foodstuffs to answer the question, “What are the potential doses and risks to the public from the Laboratory’s operations?” All known radionuclides released in significant quantities from LANL are reported and used in dose calculations. The assessments show that during 2019 all doses to the public were far below all regulatory limits and guidance and that the public is well protected. Radiological doses to the public from Laboratory operations are less than 1 millirem per year, and health risks are indistinguishable from zero.

INTRODUCTION

In this chapter, dose and risk from radiological and chemical sources are assessed to ensure the public is protected and to demonstrate compliance with federal regulations and U.S. Department of Energy (DOE) orders. Using standard methods to calculate the potential effects of radiological dose and risk, the data reported here and in the previous chapters are considered in the context of public exposure. These methods do not include tribal-specific exposure scenarios. The results are compared with regulatory limits and international standards.

RADIOLOGICAL DOSE ASSESSMENT FOR THE PUBLIC

Overview of Radiological Dose

Radiological dose is the primary measure of harm from radiation. We calculate doses using the standard methods specified in guidance documents (DOE 1988a, 1988b, 2011a, 2011b; U.S. Environmental Protection Agency 1988, 1993, 1997, 1999; International Commission on Radiological Protection 1996; Nuclear Regulatory Commission 1977). In this section, we assess doses to the public. Doses to plants and animals are assessed in Chapter 7.

DOE regulations limit the total annual dose to the public from Los Alamos National Laboratory operations to 100 millirem. Furthermore, doses must be as low as reasonably achievable and must not exceed 25 millirem from any one exposure pathway, such as from eating food or from the storage of waste (DOE 1999, 2011a; LANL 2008). The annual dose received by the public from airborne emissions of radionuclides is limited to 10 millirem by the National Emission Standards for Hazardous Air Pollutants Other Than Radon From Department of Energy Facilities, Title 40, Part 61, Subpart H of the Code of Federal Regulations. The annual dose from community drinking water supplies is limited under the Safe Drinking Water Act to 4 millirem (National Primary Drinking Water Regulations, Title 40, Part 141 of the Code of Federal Regulations).

To place these limits in context, the dose from natural background and from medical and dental procedures is about 800 millirem per year (Figure 8-1). The origins and reasons for the Los Alamos
background dose are discussed briefly below and in detail in the paper by Gillis et al. (2014). In contrast, doses from Laboratory operations are typically less than 1 millirem per year.

Figure 8-1. The average Los Alamos County radiation background dose compared with average U.S. radiation background dose (Gillis et al. 2014)

Exposure Pathways

Potential doses to the public from radionuclides associated with Laboratory operations are calculated by evaluating all potential exposure pathways. Total dose is the sum of three principal exposure pathways: (1) direct-penetrating (photon or neutron) radiation, (2) inhalation of airborne radioactive particles, and (3) ingestion of radionuclides in water or food.

Direct Radiation

We monitor direct-penetrating radiation from photons and neutrons at 80 locations in and around the Laboratory (see Chapter 4). Direct-penetrating radiation from Laboratory sources contributes to a measurable dose only within about 1 kilometer of the source. At distances more than 1 kilometer, dispersion, scattering, and absorption of the photons and neutrons attenuate the dose to much less than 0.1 millirem per year, which cannot be distinguished from natural background radiation. The only measurable above-background doses from direct-penetrating radiation originate from Technical Area 53 and Technical Area 54, as reported in Chapter 4.

Inhalation

At distances of more than 1 kilometer from Laboratory sources, any dose related to Laboratory operations is almost entirely from airborne radioactive emissions. Whenever possible, we use the airborne radioactivity levels directly measured by the air sampling network reported in Chapter 4 (the Ambient Air Sampling for Radionuclides section) to calculate doses. Where local levels of airborne radioactivity are too small to measure or cannot be measured by the environmental air-monitoring station methods, doses are calculated using a model called CAP88 (Clean Air Act Assessment Package-1988, PC Version 4) (U.S. Environmental Protection Agency 2013). CAP88 is an atmospheric-
dispersion and dose-calculation computer code that combines stack emissions with meteorological data to estimate dose.

Some of the radionuclide emissions from Technical Area 53 are short-lived and cannot be measured by the environmental air stations. These emissions are measured at the stacks (Chapter 4, the Exhaust Stack Sampling for Radionuclides section), and the resulting estimated doses are calculated with CAP88.

The air-pathway dose assessment is described in detail in an annual air emissions report (Lattin and Fuehne 2020) and in Chapter 4.

Ingestion

Ingestion includes drinking liquids and eating food. We report measurements from water in Chapters 5 and 6 and measurements from soil, plants, and animals here and in Chapter 7.

Local drinking water contains no measurable radioactivity from current or historical Laboratory operations. For further information regarding Los Alamos County drinking water quality, refer to the Los Alamos Department of Public Utilities “2019 Annual Drinking Water Quality Report” (Los Alamos County 2020).

Foodstuffs Monitoring

Monitoring Network

The Soil, Foodstuffs, and Biota Program monitors constituents in a wide variety of foodstuffs to determine whether Laboratory operations are affecting human health via the food chain. Foodstuffs samples are collected once every 3 years. In general, we collect foodstuffs from sites on the Laboratory, from communities surrounding the Laboratory (i.e., perimeter locations), from areas downstream of the Laboratory that are irrigated with Rio Grande water, and from background locations that are more than 9 miles from the Laboratory and represent worldwide fallout or natural levels. In 2019, wild foods, fruits, and vegetables (hereafter referred to as crops) were collected from the Laboratory, from gardens and farms located in Los Alamos townsite, White Rock/Pajarito Acres, Pueblo de San Ildefonso (perimeter locations), Pueblo de Cochiti (downstream of LANL), and from regional background locations (Figure 8-2). Eggs, milk, and tea were also collected from select locations. Additionally, deer and elk samples are collected on an annual basis, primarily as roadkill or hunter donations; detailed results regarding deer and elk samples can be found in Chapter 7.
Figure 8-2. Locations of foodstuffs samples collected around Los Alamos National Laboratory, from surroundings communities, and from background locations in 2019.
Approximately 2 to 3 pounds of crops were collected per sample and rinsed thoroughly with municipal tap water before analyses. Crop samples were placed into a zippered plastic bag; egg and milk samples were placed in amber-colored glass jars and polyethylene sample bottles. All samples were then labeled, sealed with chain-of-custody tape, placed on ice, and submitted to the Laboratory’s Sample Management Office. All samples were shipped under full chain of custody to ALS Laboratory, Fort Collins, Colorado, or GEL Laboratories, Charleston, South Carolina, for analyses. All samples were analyzed for radionuclides (amercurium-241, cesium-137, plutonium-238, plutonium-239/240, strontium-90, tritium, uranium-234, uranium-235/236, and uranium-238) and inorganic elements (aluminum, antimony, arsenic, barium, beryllium, cadmium, calcium, chromium, cobalt, copper, iron, lead, magnesium, manganese, mercury, nickel, potassium, selenium, silver, sodium, thallium, vanadium, and zinc). Milk and eggs were also analyzed for polychlorinated biphenyl (PCB) congeners.

All detected results of radionuclides, inorganic elements, and PCBs in foodstuffs were compared with their regional statistical reference levels. The regional statistical reference level for a chemical or radionuclide is the level below which 99 percent of the results from samples taken at regional background locations over the past 10 years fall. It is calculated from the mean value plus 3 standard deviations of the regional background results for the chemical or radionuclide. Total PCB concentrations in milk and eggs were also compared with U.S. Food and Drug Administration’s Tolerances for Polychlorinated Biphenyls (PCBs), Title 21, Part 190, Section 30 of the Code of Federal Regulations. Radionuclide and inorganic element levels in foodstuffs were analyzed for differences between locations (onsite, perimeter, and downstream locations compared with background) with an analysis of variance (ANOVA) test or a Kruskall-Wallis test; the appropriate test was selected after testing for normality with a Shapiro-Wilk test. Outliers were identified and removed before analyses with an iterative Grubbs test. Exceptions to these statistical methods occurred when a particular data set contained ≥ 80% nondetects (Helsel 2012) or when the sample size was too small for testing (n ≤ 3).

Radionuclide Monitoring in Foodstuffs

Most radionuclide activities in crops were either below the minimum detectable activity—the majority of the results—or below the regional statistical reference levels (Table S8-1). Strontium-90 was detected above the regional statistical reference level of 0.648 picocuries per gram in three samples collected at the Laboratory, ranging from 0.930 to 2.39 picocuries per gram. Strontium-90 was also detected above the regional statistical reference level in prickly pear collected from Pueblo de San Ildefonso at 1.68 picocuries per gram (Table S8-1). Uranium-238 was detected above the regional statistical reference level of 0.2052 picocuries per gram in peaches collected from Pueblo de San Ildefonso (Table S8-1).

Radionuclide activities in crops from the Laboratory, perimeter, and downstream locations did not differ from radionuclide activities in crops collected from background locations in 2019 (ANOVA or Kruskall-Wallis; p > 0.05). The Kruskall-Wallis test was significant (p < 0.05) when comparing uranium-238 activities in crops among locations. Therefore, a Dunn’s multiple comparisons test was conducted to examine pairwise comparisons (i.e., each site directly compared with another), which revealed no significant differences of uranium-238 activities among locations, including background.

The majority of radionuclides in goat milk, chicken eggs, and goose eggs were not detected or were below the regional statistical reference levels (Table S8-2). In 2019, chicken and goose eggs collected...
from White Rock were analyzed on a wet weight basis and could not be compared with the regional statistical reference level, which is on an ash weight basis. However, chicken eggs collected from background in 2019 were also analyzed on a wet weight basis; for radionuclides with detectable activities, levels were similar between the White Rock and background location (Table S8-2).

Cota tea from Pueblo de San Ildefonso was analyzed for radionuclides and inorganic elements. The majority of radionuclides in tea from Pueblo de San Ildefonso were not detected; however, uranium-234, uranium-235/236, and uranium-238 were detected (Table S8-3). As tea has not been collected from background locations, we cannot make comparisons with background levels. However, cota was collected in 2012 from several perimeter locations, including Pueblo de San Ildefonso (Table S8-3). Activities of uranium isotopes were higher in tea collected in 2019 than in tea brewed from cota in 2012; however, these data could not be statistically analyzed due to small sample size. The water that was used to brew the tea could explain the differences in uranium isotopes’ activities between 2012 and 2019. In 2012, tea samples were brewed at the analytical laboratory using distilled water. In 2019, tea was brewed with water from the Pueblo de San Ildefonso. Uranium activities observed in the tea are within the ranges of uranium activities observed in water samples from the Black Mesa monitoring well between 2011 and 2019. The source of the uranium in the groundwater at the Black Mesa well is from underground uranium deposits in the Espanola basin (McLemore et al. 2011) and not from Laboratory operations. Statistical comparisons among locations could not be made due to small sample sizes.

Inorganic Element Monitoring in Foodstuffs

Several inorganic elements were detected in crops (Table S8-4). The majority (98%) of inorganic element results were below the regional statistical reference levels. Inorganic elements that exceeded the regional statistical reference levels include antimony, copper, lead, manganese, mercury, and nickel. For these elements, levels exceeded regional statistical reference levels at onsite, perimeter, and downstream locations (Table S8-4). Levels of inorganic elements in crops from the Laboratory, perimeter, and downstream locations did not differ when compared with levels from background locations in 2019 (Kruskall-Wallis; $p > 0.05$).

Detection patterns and levels of detectable inorganic elements were similar in goat milk, chicken eggs, and goose eggs collected from perimeter locations compared with background (Table S8-5). Chicken eggs from Pueblo de San Ildefonso were analyzed on a dry weight basis while background chicken eggs were analyzed on a wet weight basis, preventing direct comparisons. However, the detection patterns were similar between locations (Table S8-5).

Several inorganic elements were not detected in cota tea (Table S8-3). Arsenic, calcium, copper, magnesium, manganese, potassium, vanadium, and zinc were detected. No tea from background was collected for comparisons and tea collected in 2012 was only analyzed for radionuclides. The majority of detectable inorganic element concentrations were within the range of elements detected in water samples from the Black Mesa well, and both arsenic and copper levels were well below the drinking water standards in the *National Primary Drinking Water Regulations*, Title 40, Part 141 of the Code of Federal Regulations.
PCB Monitoring in Foodstuffs

PCBs were evaluated in animal foodstuffs samples, including goat milk from North Mesa Stables in Los Alamos and from Santa Cruz, a background sample. Goat milk from Santa Cruz did not contain any detectable concentrations of PCBs. Goat milk from Los Alamos contained 0.00922 parts per billion (Table S8-6). This is well below the PCB tolerance value in milk of 1500 parts per billion (from Tolerances for Polychlorinated Biphenyls (PCBs), Title 21, Part 190, Section 30 of the Code of Federal Regulations).

PCBs were evaluated in chicken eggs collected from perimeter locations, including White Rock and Pueblo de San Ildefonso, and from a background location in El Rito; goose eggs from White Rock were also analyzed for PCBs. All egg samples contained PCBs ranging from 0.0000264 to 0.00228 parts per million and all concentrations were well below the PCB tolerance value in eggs of 0.3 parts per million.

Overall, PCB concentrations in milk and eggs are well below levels that are associated with adverse effects in humans. Statistical comparisons between locations could not be made due to small sample sizes.

Dose from Food

DOE Standard 1196 (DOE 2011b) was used to calculate the dose from ingestion of locally grown food. The following analyses are from radionuclides that are not associated with the Laboratory; strontium-90 is from global fallout and uranium is naturally occurring. However, they show that even in the worst cases, the dose from ingestion of foodstuffs is small.

The strontium-90 concentrations in foodstuffs from global fallout were especially variable because some types of plants take up more strontium than others (Burger 2019). The largest concentration, 1.68 picocuries per gram, was measured in prickly pear (Table S8-1). Eating a kilogram of this prickly pear would result in a dose of 0.004 millirem.

The uranium in the water used to brew the cota tea is naturally occurring (McLemore et al. 2011) and is similar to nearby locations (Kraig and Gladney 2001). The dose from drinking a liter of this tea would be 0.003 millirem.

The data demonstrate that the dose from eating local or regional foodstuffs, including crops, eggs, milk, tea, deer, and elk (deer and elk discussed in Chapter 7), is well below 0.1 millirem per year. Radionuclide concentrations in publicly available food is consistent with global fallout or naturally occurring material and any contributions from the Laboratory are too small to measure. Whatever the source, the dose from ingestion of foodstuffs is very small.

The conclusion is that the ingestion dose from Los Alamos National Laboratory operations is much less than 0.1 millirem per year and consistent with zero.

Dose from Naturally Occurring Radiation

Near Los Alamos, naturally occurring sources of radioactivity include (1) cosmic rays, (2) direct-penetrating radiation from terrestrial sources, (3) radon gas, and (4) elements that occur naturally inside the human body, such as potassium-40 (Figure 8-1).
Annual doses from cosmic radiation range from 50 millirem at lower elevations near the Rio Grande to about 90 millirem in the higher elevations west of Los Alamos (Bouville and Lowder 1988, Gillis et al. 2014).

Annual background doses from external gamma radiation (from natural terrestrial sources such as uranium and thorium and their decay products) range from about 50 millirem to 150 millirem (DOE 2012).

The inhalation of naturally occurring radon and its decay products constitutes a large proportion of the annual dose for a member of the public. Nationwide, the average annual dose from radon is about 200 millirem to 300 millirem (National Council on Radiation Protection and Measurements 1987). In Los Alamos County, the average residential radon concentration results in an annual dose of about 300 millirem (Whicker 2009a, 2009b).

An additional 30 millirem per year results from naturally occurring radioactive materials in the body, such as potassium-40, which is present in all food and living cells.

Additional man-made sources of radiation, including medical and dental uses of radiation and building products such as stone walls, raise the total average annual background dose (Gillis et al. 2014). Members of the U.S. population receive an average annual dose of 300 millirem from medical and dental uses of radiation (National Council on Radiation Protection and Measurements 2009). Another 10 millirem per year comes from man-made products, such as stone or adobe walls.

In total, the average annual dose from sources other than Laboratory operations is about 800 millirem for a typical Los Alamos County resident. Figure 8-1 compares the average radiation background in Los Alamos County with the average background dose in the United States.

Generally, any additional dose of less than 0.1 millirem per year cannot be distinguished from the dose generated by background levels of radiation.

Results and Dose Calculations

The objective of this section is to calculate doses to the public from Laboratory operations.

As required by DOE Order 458.1 Chg 3, Radiation Protection of the Public and the Environment, we calculated doses from the Laboratory to the following members of the public:

- the total human population within 80 kilometers (50 miles) of the Laboratory, and
- the hypothetical “maximally exposed individual.”

To identify the location of and the total dose to the hypothetical maximally exposed individual, the following are considered:

- the air-pathway dose,
- the onsite dose at publicly accessible locations,
- other locations with measurable dose, and
- the offsite dose.
Collective Dose to the Population within 80 Kilometers

The collective population dose from Laboratory operations is the sum of the doses for each member of the public within an 80-kilometer radius of the Laboratory (DOE 2011a). Outside of Los Alamos County, the doses are too small to measure directly, so the collective dose was calculated by modeling the transport of radioactive air emissions using CAP88. The doses from the pathways other than air are either negligible or nonexistent.

The 2019 collective population dose to persons living within 80 kilometers of the Laboratory is 0.07 person-rem (Lattin and Fuehne 2020). This dose is less than 0.001 millirem per person and is much less than the background doses shown in Figure 8-1.

Tritium contributed 46 percent of the dose from the Laboratory, and short-lived activation products, such as carbon-11 from the Los Alamos Neutron Science Center, contributed 54 percent. Collective population doses for recent years are shown in Figure 8-3. The trend line for the past 10 years shows a general decrease, which is the result of improved engineering controls at the Los Alamos Neutron Science Center and the tritium facilities.

![Figure 8-3. Annual collective dose (person-rem) to the population within 80 kilometers of the Laboratory](image)

Dose to the Maximally Exposed Individual

The “maximally exposed individual” is a hypothetical member of the public who receives the greatest possible dose from Laboratory operations (DOE 2011a). To determine the location where a member of the public would be maximally exposed, we consider all exposure pathways that could cause a dose and all publicly accessible locations, both within the Laboratory boundary (onsite) and outside the boundary (offsite).

Maximally Exposed Individual Offsite Dose for 2019

The air-pathway dose calculations are described in an annual air emissions report (Lattin and Fuehne 2020). In 2019, the offsite location of the hypothetical maximally exposed individual was at 27 DP Road, close to environmental air-monitoring station #317 (Chapter 4, Figure 4-1). The total offsite...
dose for a maximally exposed individual during 2019 was 0.43 millirem (Figure 8-4; Lattin and Fuehne 2020).

Contributions to this annual dose were from short-lived activation products from the Los Alamos Neutron Science Center stacks (0.002 millirem), other stack emissions (0.001 millirem), environmental measurements at air-monitoring stations (0.184 millirem), and the potential dose contribution from unmonitored stacks (0.246 millirem). Doses from ingestion and direct radiation were less than 0.01 millirem.

Figure 8-4. Annual maximally exposed individual offsite dose

Maximally Exposed Individual Onsite Dose for 2019

The onsite locations where a member of the public could receive a measurable dose are on or near publicly accessible roads (McNaughton et al. 2013). The only location with a measurable Laboratory-generated dose is at East Jemez Road near Technical Area 53. As reported in Chapter 4 (the Monitoring for Gamma and Neutron Direct-Penetrating Radiation section), at this location in 2019 the neutron dose was 0.7 millirem and the gamma dose was 0.1 millirem for a total of 0.8 millirem. The contribution from stack emissions was less than 0.01 millirem. These are the doses that would be received by a hypothetical individual at this location 24 hours per day and 365 days per year; however, members of the public, such as joggers, bus drivers, or cyclists, spend less than 1 percent of their time at this location (National Council on Radiation Protection and Measurements 2005). Therefore, the onsite dose for a
maximally exposed individual is less than 1 percent of 0.8 millirem, which is much less than the offsite dose for a maximally exposed individual described in the previous section.

Other Locations with Measurable Dose

As reported in Chapter 4, neutron dose was measured in Cañada del Buey, north of Technical Area 54, Area G, and near the Pueblo de San Ildefonso boundary. Transuranic waste at Area G awaiting shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico, emits neutrons. After subtracting background, the measured neutron dose in Cañada del Buey in 2019 was 2 millirem. After applying the standard factor of 1/20 for occasional occupancy (National Council on Radiation Protection and Measurements 2005), the individual neutron dose in 2019 was $2/20 \approx 0.1$ millirem. The contribution from Laboratory stack emissions was less than 0.001 millirem. Within the boundaries of Area G, the average air concentration of americium and plutonium was 2 attocuries per cubic meter (Chapter 4, Tables 4-3 and 4-4) and the average uranium-238 concentration was 7 attocuries per cubic meter (Chapter 4, Table 4-5). Using the dose conversion factors from DOE Standard 1196 (DOE 2011b) and assuming 1/20 occupancy, the annual dose both within and near Area G was much less than 0.001 millirem from air concentrations of transuranic materials.

Thus, in 2019, the total dose in Cañada del Buey was 0.1 millirem.

Maximally Exposed Individual Summary

At the offsite location for the maximally exposed individual, 278 DP Road, the direct-penetrating radiation and ingestion doses are essentially zero, so the largest all-pathway dose for 2019 was the same as the air-pathway dose of 0.43 millirem.

The calculated offsite doses for the maximally exposed individual each year for recent years are shown in Figure 8-4. The general downward trend is the result of improved engineering controls and ongoing remediation.

As described in previous annual site environmental reports, the 6.46-millirem dose in 2005 resulted from a leak at Technical Area 53, and the 3.53-millirem dose in 2011 was from the remediation of Material Disposal Area B. The 2011 maximally exposed individual location was the same as the 2019 location, near the middle of Material Disposal Area B.

The dose of 0.43 millirem in 2019 is far below the 10-millirem annual air-pathway limit in the National Emission Standards for Hazardous Air Pollutants Other Than Radon From Department of Energy Facilities, Title 40, Part 61, Subpart H of the Code of Federal Regulations, and the 100-millirem all-pathway DOE limit (DOE 2011a). The dose for the maximally exposed individual is less than 0.1 percent of the average U.S. background radiation dose shown in Figure 8-1.

Conclusion

The doses to the public from Laboratory operations are summarized in Table 8-1. Doses are far below all regulations and standards.
Table 8-1. LANL Radiological Doses for Calendar Year 2019

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Dose to Maximally Exposed Individual (millirems per year)</th>
<th>Percentage of DOE 100-millirem-per-year Limit</th>
<th>Estimated Population Dose (person-rem)</th>
<th>Number of People within 80 kilometers</th>
<th>Estimated Background Population Dose (person-rem)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>0.43</td>
<td>0.43%</td>
<td>0.07</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Water</td>
<td><0.1</td>
<td><0.1%</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Other pathways</td>
<td><0.1</td>
<td><0.1%</td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>(foodstuffs, soil, etc.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All pathways</td>
<td>0.43</td>
<td>0.43%</td>
<td>0.07</td>
<td>~343,000</td>
<td>~268,000</td>
</tr>
</tbody>
</table>

*n/a = Not applicable. Background population dose is not calculated for individual exposure pathways.

Based on 780 millirem per person as shown in Figure 8-1

NONRADIOLOGICAL MATERIALS

Introduction

This section summarizes the potential human health risk from nonradiological materials released from the Laboratory in 2019. Air emissions are reported in Chapters 2 and 4; groundwater is reported in Chapter 5; surface water and sediment are reported in Chapter 6; and soil, plants, and animals are reported in Chapter 7. Foodstuffs are reported in this chapter. The results are summarized below.

Results Summary

Air

The data reported in Chapters 2 and 4 show that the Los Alamos air quality is good and well below all applicable state and federal air quality standards. The Laboratory’s emissions of regulated pollutants are below the amounts allowed in LANL’s Title V Operating Permit. There are no measurable health effects to the public from Laboratory air emissions.

Groundwater

Groundwater data are reported in Chapter 5.

Los Alamos County monitors its water supply in compliance with the Safe Drinking Water Act, and we analyzed additional samples from Los Alamos County water supply wells in 2019. No water supply wells showed detections of Laboratory-related constituents above an applicable drinking water standard. The drinking water supply meets New Mexico Environment Department and U.S. Environmental Protection Agency drinking water standards (Los Alamos County 2020).

Additional supplemental water sampling was conducted in the City of Santa Fe’s Buckman well field. No Laboratory-related constituents were present above state or federal drinking water quality standards in this drinking water supply.

Within Laboratory boundaries, hexavalent chromium from the Laboratory has been detected above the New Mexico groundwater standard (50 micrograms per liter) in the regional aquifer below Mortandad Canyon. As described in Chapter 5, the Laboratory has begun remediation to control migration of this chromium plume.
The Los Alamos County drinking water contains 5 micrograms per liter of naturally occurring chromium that is unrelated to the Laboratory (Los Alamos County 2020). More information on groundwater quality is available in Chapter 5.

Surface Water and Sediment

The concentrations of chemicals in surface water and sediment are reported in Chapter 6. The sediment data verify the conceptual model that movement and addition of sediment from repeated flood events result in lower concentrations of Laboratory-related constituents in newer sediment deposits compared with previous deposits. The data also show that the human health risk assessments in the canyons investigation reports (see Chapter 6) represent an upper bound of potential risks. Human exposure scenarios were discussed in the investigation reports. The conclusions in the investigation reports, that there were no human health risks, remain accurate because the constituent concentrations decrease with time.

In Chapter 6, we compared unfiltered storm water concentrations with drinking water standards as screening levels. However, storm water is not a drinking water source and therefore is not a significant pathway to human exposure. The plant and animal measurements reported in Chapters 7 and 8 confirm that there is not significant uptake into the food chain.

Chapter 6 presents data for PCBs in the surface water of the Pajarito Plateau. The foodstuffs that may use this water are primarily terrestrial animals, such as deer and elk. The data reported in Chapter 7 show that the concentrations of PCBs in deer and elk are far below the human health screening values and are unlikely to cause adverse human health effects.

The only aquatic animals eaten by people that may be influenced by surface water runoff from the Laboratory are in the Rio Grande. In the Rio Grande, PCB concentrations in aquatic animals are similar upstream and downstream of LANL influence (LANL 2017, Chapter 7). There is no detectable contribution from the Laboratory to PCB concentrations in aquatic animals in the Rio Grande.

We conclude there is no risk to the public from exposure to surface water and sediment resulting from either current or legacy Laboratory releases.

Soil, Plants, and Animals

Soil and biota sampling results are reported in Chapter 7. The results are similar to previous years. At offsite locations in 2019, chemical concentrations above human-health-based screening criteria were not detected.

Conclusion

The environmental data collected in 2019 show that at present there is no measurable risk to the public from materials released from the Laboratory. In all cases, the public doses and risks from Los Alamos National Laboratory operations are much smaller than the regulatory limits and the naturally occurring background levels.
QUALITY ASSURANCE

The Soil, Foodstuffs, and Biota Program collects samples according to written, standard quality assurance and quality control procedures and protocols. These procedures and protocols are identified in the Laboratory’s Implementation of the Soil, Foodstuffs, and Biota Program, Quality Assurance Project Plan (EPC-ES-QAPP-001) and in the following Laboratory procedures pertaining to foodstuffs collections:

- Produce Sampling (EPC-ES-TP-004),
- Road Kill Sampling (EPC-ES-TP-007),
- Crayfish Sampling (EPC-ES-TP-008), and
- Fish Sampling (EPC-ES-TP-005).

REFERENCES

STANDARDS AND SCREENING LEVELS FOR RADIONUCLIDES AND OTHER CHEMICALS IN ENVIRONMENTAL SAMPLES

GENERAL FORMATION OF A STANDARD OR SCREENING LEVEL

An environmental standard is a value, generally defined by a regulator such as the U.S. Environmental Protection Agency, that specifies the maximum permissible concentration of a potentially hazardous chemical in an environmental sample, generally of air or water. A screening level is a value, which may be calculated by a regulator or by another party, that when exceeded in a sample result, indicates the sampled location may warrant further investigation or site cleanup. Standards and screening levels are crafted to protect a target group from chemical exposure when considering a given exposure pathway or scenario for a specific time frame. A target group may refer to, for example, the general public, animals, or a sensitive population like children. Pathways of exposure include inhalation of air and ingestion of water, soil, animals, or plants. Length of exposure is important because prolonged exposure to low levels of a potentially hazardous chemical may have adverse health effects, as may a short exposure to high levels. Scenarios describe the activities of a target group at the site, which influence both the length and likelihood of exposures. Examples of exposure scenarios include residential (living on a site) and construction worker (disturbing soil during construction activities at a site).

Throughout this report, levels of radioactive and chemical constituents in air and water samples are compared with pertinent standards and guidelines in regulations of federal and state agencies. For environmental samples that do not have standards or guidelines, levels are compared with screening levels.

RADIATION STANDARDS

The U.S. Department of Energy (DOE) limits the radiation dose that can be received by members of the public as a result of normal operations at Los Alamos National Laboratory (LANL, or the Laboratory).

DOE Order 458.1 Chg 3, Radiation Protection of the Public and the Environment, describes the current radiation protection standards for the public, referred to as public dose limits; limits are listed in Table A-1. DOE’s public dose limits apply to the effective dose that a member of the public can receive from DOE operations. For all exposure pathways combined, the total limit is 100 millirem per year (mrem/yr).

Radionuclide activities in water are compared with DOE’s derived concentration guides to evaluate potential impacts to members of the public. The derived concentration guides for water are those concentrations in water that if consumed at a rate of 730 liters per year, would give a dose of 100 mrem/yr.

<p>| Table A-1. DOE Dose Limits for External and Internal Exposures |</p>
<table>
<thead>
<tr>
<th>Exposure Pathway</th>
<th>Dose Equivalent at Point of Maximum Probable Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure of Any Member of the Public</td>
<td></td>
</tr>
<tr>
<td>All pathways</td>
<td>100 mrem/yr</td>
</tr>
<tr>
<td>Air pathway only*</td>
<td>10 mrem/yr</td>
</tr>
<tr>
<td>Drinking water</td>
<td>4 mrem/yr</td>
</tr>
</tbody>
</table>

*This level is from the U.S. Environmental Protection Agency’s regulations issued under the Clean Air Act (Code of Federal Regulations Title 40, Part 61, Subpart H).
Table A-2 shows the derived concentration guides. For comparison with drinking water systems, the derived concentration guides are multiplied by 0.04 to correspond with the U.S. Environmental Protection Agency limit of 4 millirem per year.

In addition to DOE standards, in 1985 and 1989, the U.S. Environmental Protection Agency established the “National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities,” in Title 40, Part 61, Subpart H of the Code of Federal Regulations. This regulation states that emissions of radionuclides to the ambient air from DOE facilities shall not exceed those amounts that would cause any member of the public to receive in any year an effective dose of 10 millirem per year. DOE has adopted this dose limit (Table A-1). In addition, the regulation requires monitoring of all release points that can produce a dose of 0.1 millirem to a member of the public.

NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

The types of monitoring required under the National Pollutant Discharge Elimination System and the limits established for sanitary and industrial outfalls can be found at http://water.epa.gov/polwaste/npdes/.

DRINKING WATER STANDARDS

For chemical constituents in drinking water, regulations and standards are issued by the U.S. Environmental Protection Agency and adopted by the New Mexico Environment Department as part of the New Mexico Drinking Water Regulations. To view the New Mexico Drinking Water Regulations, go to https://www.env.nm.gov/drinking_water/laws-and-regs/.

Radioactivity in drinking water is regulated by U.S. Environmental Protection Agency regulations contained in Title 40, Part 141 of the Code of Federal Regulations and by the New Mexico Drinking Water Regulations, Sections 206 and 207. These regulations stipulate that combined radium-226 and radium-228 activity in drinking water may not exceed 5 picocuries per liter. Gross-alpha activity (including radium-226 but excluding radon and uranium) may not exceed 15 picocuries per liter. We use

<table>
<thead>
<tr>
<th>Nuclide</th>
<th>Derived Concentration Guides for Water Ingestion in Uncontrolled Areas (pCi/L)</th>
<th>Derived Concentration Guides for Drinking Water Systems (pCi/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen-3</td>
<td>2,000,000</td>
<td>80,000</td>
</tr>
<tr>
<td>Beryllium-7</td>
<td>1,000,000</td>
<td>40,000</td>
</tr>
<tr>
<td>Strontium-89</td>
<td>20,000</td>
<td>800</td>
</tr>
<tr>
<td>Strontium-90</td>
<td>1000</td>
<td>40</td>
</tr>
<tr>
<td>Cesium-137</td>
<td>3000</td>
<td>120</td>
</tr>
<tr>
<td>Uranium-234</td>
<td>500</td>
<td>20</td>
</tr>
<tr>
<td>Uranium-235</td>
<td>600</td>
<td>24</td>
</tr>
<tr>
<td>Uranium-238</td>
<td>600</td>
<td>24</td>
</tr>
<tr>
<td>Plutonium-238</td>
<td>40</td>
<td>1.6</td>
</tr>
<tr>
<td>Plutonium-239</td>
<td>30</td>
<td>1.2</td>
</tr>
<tr>
<td>Plutonium-240</td>
<td>30</td>
<td>1.2</td>
</tr>
<tr>
<td>Americium-241</td>
<td>30</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Derived concentration guides for uncontrolled areas are based on DOE’s public dose limit for the general public. Derived concentration guides apply to concentrations in excess of those occurring naturally or from worldwide fallout.

pCi/L = picocuries per liter

Drinking water derived concentration guides are 4% of the derived concentration guides for nondrinking water.
a screening level of 5 picocuries per liter for gross alpha to determine when further analysis for the radium isotopes is needed.

For man-made beta- and photon-emitting radionuclides, U.S. Environmental Protection Agency drinking water standards are limited to activities that would result in doses not exceeding 4 millirem per year. In addition, DOE Order 458.1 requires that persons consuming water from DOE-operated public water supplies do not receive a dose greater than 4 millirem per year. Derived concentration guides for drinking water systems based on this requirement are in Table A-2.

SURFACE WATER STANDARDS

Activities of radionuclides in surface water samples may be compared with either the DOE derived concentration guides (Table A-2) or the New Mexico Water Quality Control Commission stream standards, which reference the state’s radiation protection regulations. The concentrations of nonradioactive constituents may be compared with the New Mexico Water Quality Control Commission stream standards, available at https://www.env.nm.gov/surface-water-quality/wqs/. The New Mexico Water Quality Control Commission groundwater standards can also be applied in cases where discharges may affect groundwater.

SOILS AND SEDIMENTS

If chemical or radionuclide levels in soil exceed regional statistical reference levels (regional background levels), the levels are compared with screening levels. The human health screening level for soil from publically accessible locations is the level that would produce (1) a dose of 15 millirem or greater to an individual for radionuclides, (2) an estimated excess cancer risk of 1×10^{-5} for cancer-causing chemicals, or (3) a hazard quotient greater than 1 for hazardous chemicals that do not cause cancer. The screening levels are different for different exposure scenarios. Screening levels for radionuclides are found in a Laboratory document (LANL 2015); screening levels for nonradioactive substances are found in a New Mexico Environment Department document (NMED 2015).

FOODSTUFFS

Federal standards exist for radionuclides and selected nonradionuclides (e.g., mercury and polychlorinated biphenyls [PCBs]) in foodstuffs. The Laboratory has established screening levels for radionuclides. If levels in foodstuffs exceed regional statistical reference levels, they are compared with screening levels and existing standards. The Laboratory has established a screening level of 1 millirem per year for activities of individual radionuclides in individual foodstuffs (e.g., fish, crops, etc.), assuming a residential scenario. The U.S. Environmental Protection Agency has established screening levels for mercury (EPA 2001) and PCBs (EPA 2000) in fish.

BIOTA

If radionuclide or chemical levels in biota exceed regional statistical reference levels, the levels are compared with screening levels. For radionuclides in biota, screening levels were set at 10% of the DOE standard (which is 1 rad per day for terrestrial plants and aquatic biota and 0.1 rad per day for terrestrial animals) by the Laboratory (DOE 2002). For chemicals, if a chemical in biota tissue exceeds the regional statistical reference level, (1) detected concentrations are compared with lowest observed adverse
effect levels reported in published literature, if there is one available, and (2) chemical concentrations in the soil at the place of collection are compared with ecological screening levels (LANL 2017).

REFERENCES

UNITS OF MEASUREMENT

Throughout the Annual Site Environmental Report, the U.S. customary (English) system of measurement has generally been used. For units of radiation activity, exposure, and dose, U.S. customary units (that is, curie, roentgen, rad, and rem) are retained as the primary measurement because current standards are written in terms of these units. The equivalent units from the International System of Units are the becquerel, coulomb per kilogram, gray, and sievert, respectively. Table B-1 presents factors for converting U.S. customary units into units from the International System of Units.

Table B-1. Approximate Conversion Factors for Selected U.S. Customary Units

<table>
<thead>
<tr>
<th>Multiply U.S. Customary Unit</th>
<th>by</th>
<th>to Obtain International System of Units (Metric) Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>degrees Fahrenheit</td>
<td>5/9 (first subtract 32)</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>inches</td>
<td>2.54</td>
<td>centimeters</td>
</tr>
<tr>
<td>cubic feet</td>
<td>0.028</td>
<td>cubic meters</td>
</tr>
<tr>
<td>acres</td>
<td>0.4047</td>
<td>hectares</td>
</tr>
<tr>
<td>ounces</td>
<td>28.3</td>
<td>grams</td>
</tr>
<tr>
<td>pounds</td>
<td>0.453</td>
<td>kilograms</td>
</tr>
<tr>
<td>miles</td>
<td>1.61</td>
<td>kilometers</td>
</tr>
<tr>
<td>gallons</td>
<td>3.785</td>
<td>liters</td>
</tr>
<tr>
<td>feet</td>
<td>0.305</td>
<td>meters</td>
</tr>
<tr>
<td>parts per million</td>
<td>1</td>
<td>micrograms per gram</td>
</tr>
<tr>
<td>parts per million</td>
<td>1</td>
<td>milligrams per liter</td>
</tr>
<tr>
<td>square miles</td>
<td>2.59</td>
<td>square kilometers</td>
</tr>
<tr>
<td>picocuries</td>
<td>37</td>
<td>millibecquerel</td>
</tr>
<tr>
<td>rad</td>
<td>0.01</td>
<td>gray</td>
</tr>
<tr>
<td>millirem</td>
<td>0.01</td>
<td>millisievert</td>
</tr>
</tbody>
</table>

Table B-2 presents prefixes used in this report to define fractions or multiples of the base units of measurements. Scientific notation is used in this report to express very large or very small numbers. Translating from scientific notation to a more traditional number requires moving the decimal point either left or right from the number. If the value given is 2.0×10^3, the decimal point should be moved three numbers (insert zeros if no numbers are given) to the right of its present location. The number would then read 2000. If the value given is 2.0×10^{-5}, the decimal point should be moved five numbers to the left of its present location. The result would be 0.00002.
Table B-2. Prefixes Used with International System of Units (Metric) Units

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Factor</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>mega</td>
<td>1,000,000 or 10^6</td>
<td>M</td>
</tr>
<tr>
<td>kilo</td>
<td>1000 or 10^3</td>
<td>k</td>
</tr>
<tr>
<td>centi</td>
<td>0.01 or 10^{-2}</td>
<td>c</td>
</tr>
<tr>
<td>milli</td>
<td>0.001 or 10^{-3}</td>
<td>m</td>
</tr>
<tr>
<td>micro</td>
<td>0.000001 or 10^{-6}</td>
<td>µ</td>
</tr>
<tr>
<td>nano</td>
<td>0.00000001 or 10^{-9}</td>
<td>n</td>
</tr>
<tr>
<td>pico</td>
<td>0.00000000001 or 10^{-12}</td>
<td>p</td>
</tr>
<tr>
<td>femto</td>
<td>0.000000000000001 or 10^{-15}</td>
<td>f</td>
</tr>
<tr>
<td>atto</td>
<td>0.0000000000000001 or 10^{-18}</td>
<td>a</td>
</tr>
</tbody>
</table>

DATA HANDLING OF RADIOCHEMICAL SAMPLES

Measurements of radioactivity in samples require that analytical or instrumental backgrounds be subtracted to obtain net values. Thus, net values are sometimes obtained that are lower than the minimum detection limit of the analytical technique, and results for individual measurements can be negative numbers. Although a negative value does not represent a physical reality, a valid long-term average of many measurements can be obtained only if the very small and negative values are included in the population calculations (Gilbert 1975).

For individual measurements, uncertainties are reported as one standard deviation. The standard deviation is estimated from the propagated sources of analytical error.

Standard deviations for the ambient air monitoring network station and group (offsite regional, offsite perimeter, and onsite) means are calculated using the standard equation:

$$ s = \left(\frac{\sum (c_i - \bar{c})^2}{N - 1} \right)^{\frac{1}{2}} $$

where

- c_i = sample i,
- \bar{c} = mean of samples from a given station or group, and
- N = number of samples in the station or group.

This value is reported as one standard deviation for the station and group means.

REFERENCE

Locations of the technical areas operated by Los Alamos National Laboratory (the Laboratory) in Los Alamos County are shown in Figure 1-3 in Chapter 1. The main programs conducted at each of the areas are listed in this appendix.

<table>
<thead>
<tr>
<th>Technical Area</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>00 (offsite facilities)</td>
<td>The Technical Area 00 designation is assigned to structures leased by the U.S. Department of Energy that are located outside the Laboratory’s boundaries in the Los Alamos townsite and White Rock.</td>
</tr>
<tr>
<td>02 (Omega Site or Omega West Reactor)</td>
<td>Omega West Reactor, an 8-megawatt nuclear research reactor, was located at Technical Area 02. The reactor was decontaminated and decommissioned in 2002. It is now the location of the Omega West Monument and interpretive panels. The monument commemorates the historic reactors and other historical events that took place at Technical Area 02.</td>
</tr>
<tr>
<td>03 (Core Area or South Mesa Site)</td>
<td>Technical Area 03 is the Laboratory’s core scientific and administrative area, with approximately half of the Laboratory’s employees and total floor space. It is the location of a number of the Laboratory’s key facilities, including the Chemistry and Metallurgy Research Building, the Sigma Complex, the Machine Shops, the Material Sciences Laboratory, and the Nicholas C. Metropolis Center for Modeling and Simulation.</td>
</tr>
<tr>
<td>05 (Beta Site)</td>
<td>Technical Area 05 is located between East Jemez Road and the Pueblo de San Ildefonso. It contains physical support facilities and an electrical substation. It is also the site of the Laboratory’s interim measure to control chromium plume migration in the regional aquifer.</td>
</tr>
<tr>
<td>06 (Twomile Mesa Site)</td>
<td>Technical Area 06, located in the northwestern part of the Laboratory, is mostly undeveloped. It contains a meteorological tower, gas-cylinder-staging buildings, the Western Technical Area Substation, and buildings that are awaiting demolition.</td>
</tr>
<tr>
<td>08 (GT Site [Anchor Site West])</td>
<td>Technical Area 08, located along West Jemez Road, is a testing site where nondestructive dynamic testing techniques are used to ensure the quality of materials in items ranging from test weapons components to high-pressure dies and molds. Techniques used include radiography, radioisotope techniques, ultrasonic and penetrant testing, and electromagnetic test methods.</td>
</tr>
<tr>
<td>09 (Anchor Site East)</td>
<td>Technical Area 09 is located on the western edge of the Laboratory. Fabrication feasibility and the physical properties of explosives are explored at this technical area, and new organic compounds are investigated for possible use as explosives.</td>
</tr>
<tr>
<td>11 (K-Site)</td>
<td>Technical Area 11 is used for testing explosives components and systems, including vibration analysis and drop-testing materials and components under a variety of extreme physical environments. Facilities are arranged so that testing may be controlled and observed remotely, allowing devices that contain explosives, radioactive materials, and nonhazardous materials to be safely tested and observed.</td>
</tr>
<tr>
<td>14 (Q-Site)</td>
<td>Technical Area 14, located in the northwestern part of the Laboratory, is one of 14 firing areas. Most operations are remotely controlled and involve detonations, certain types of high-explosives machining, and permitted burning.</td>
</tr>
<tr>
<td>15 (R-Site)</td>
<td>Technical Area 15, located in the central portion of the Laboratory, is used for high-explosives research, development, and testing, mainly through hydrodynamic testing and dynamic experimentation. Technical Area 15 is the location of two firing sites: the Dual-Axis Radiographic Hydrodynamic Test Facility, which has an intense high-resolution, dual-machine radiographic capability; and building 306, a multipurpose facility where primary diagnostics are performed.</td>
</tr>
<tr>
<td>Technical Area</td>
<td>Activities</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>16 (S-Site)</td>
<td>Technical Area 16, in the western part of the Laboratory, is the location of the Weapons Engineering Tritium Facility, a state-of-the-art tritium processing facility. Technical Area 16 is also the location of high-explosives research, development, and testing; the High Explosives Wastewater Treatment Facility; the Tactical Training Facility; and the Indoor Firing Range.</td>
</tr>
<tr>
<td>18 (Pajarito Site)</td>
<td>Technical Area 18, located in Pajarito Canyon, was the location of the Los Alamos Critical Experiment Facility, a general purpose nuclear experiments facility. All operations at Technical Area 18 have ceased. The technical area, including the Pond Cabin and the Slotin Building, is now part of the Manhattan Project National Historical Park.</td>
</tr>
<tr>
<td>21 (DP Site)</td>
<td>Technical Area 21 is on the northern border of the Laboratory, next to the Los Alamos townsite. The former radioactive materials (including plutonium) processing facility was located in the western part of Technical Area 21. The Tritium Systems Test Assembly and the Tritium Science and Fabrication Facility were located in the eastern part. Operations from these facilities have been transferred and demolition was completed in 2010.</td>
</tr>
<tr>
<td>22 (TD Site)</td>
<td>Technical Area 22, located in the northwestern portion of the Laboratory, houses the Detonator Production Facility. Research, development, and fabrication of high-energy detonators and related devices are conducted at this facility.</td>
</tr>
<tr>
<td>28 (Magazine Area A)</td>
<td>Technical Area 28, located near the southern edge of the Laboratory, was an explosives storage area. Technical Area 28 contains five empty storage magazines that are being decontaminated and decommissioned.</td>
</tr>
<tr>
<td>33 (HP Site)</td>
<td>Technical Area 33 is a remotely located technical area at the southeastern boundary of the Laboratory. Technical Area 33 is used for experiments that require isolation but do not require daily oversight. The National Radioastronomy Observatory’s Very Long Baseline Array telescope is located at this technical area.</td>
</tr>
<tr>
<td>35 (Ten Site)</td>
<td>Technical Area 35, located in the north-central portion of the Laboratory, is used for nuclear safeguards research and development, primarily in the areas of lasers, physics, fusion, materials development, and biochemistry and physical chemistry research and development. The Target Fabrication Facility, located at Technical Area 35, conducts precision machining and target fabrication, polymer synthesis, and chemical and physical vapor deposition. Additional activities at Technical Area 35 include research in reactor safety, optical science, and pulsed-power systems, as well as metallurgy, ceramic technology, and chemical plating. Additionally, there are some Biosafety Level 1 and 2 laboratories at Technical Area 35.</td>
</tr>
<tr>
<td>36 (Kappa Site)</td>
<td>Technical Area 36, a remotely located area in the eastern portion of the Laboratory, has four active firing sites that support explosives testing. The sites are used for a wide variety of nonnuclear ordnance tests.</td>
</tr>
<tr>
<td>37 (Magazine Area C)</td>
<td>Technical Area 37 is used as an explosives storage area. It is located along the eastern perimeter of Technical Area 16.</td>
</tr>
<tr>
<td>39 (Ancho Canyon Site)</td>
<td>Technical Area 39 is located at the bottom of Ancho Canyon. Technical Area 39 is used to study the behavior of nonnuclear weapons (primarily by photographic techniques) and various phenomenological aspects of explosives.</td>
</tr>
<tr>
<td>40 (DF Site)</td>
<td>Technical Area 40, centrally located within the Laboratory, is used for general testing of explosives or other materials and development of special detonators for initiating high-explosives systems.</td>
</tr>
<tr>
<td>41 (W-Site)</td>
<td>Technical Area 41, located in Los Alamos Canyon, is no longer actively used. Many buildings have been decontaminated and decommissioned; the remaining structures include historic properties.</td>
</tr>
<tr>
<td>Technical Area</td>
<td>Activities</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
</tr>
<tr>
<td>43 (the Bioscience Facilities, formerly called the Health Research Laboratory)</td>
<td>Technical Area 43 is adjacent to the Los Alamos Medical Center at the northern border of the Laboratory and is the location of the Bioscience Facilities (formerly called the Health Research Laboratory). The Bioscience Facilities have Biosafety Level 1 and 2 laboratories and are the focal point of bioscience and biotechnology at the Laboratory. Research performed at the Bioscience Facilities includes structural, molecular, and cellular radiobiology; biophysics; radiobiology; biochemistry; and genetics.</td>
</tr>
<tr>
<td>46 (WA Site)</td>
<td>Technical Area 46, located between Pajarito Road and the Pueblo de San Ildefonso, is one of the Laboratory's basic research sites. Activities have focused on applied photochemistry operations and have included development of technologies for laser isotope separation and laser enhancement of chemical processes. The Sanitary Waste Water Systems Plant is also located within this technical area.</td>
</tr>
<tr>
<td>48 (Radiochemistry Site)</td>
<td>Technical Area 48, located in the north-central portion of the Laboratory, supports research and development in nuclear and radiochemistry, geochemistry, production of medical radioisotopes, and chemical synthesis. Hot cells are used to produce medical radioisotopes.</td>
</tr>
<tr>
<td>49 (Frijoles Mesa Site)</td>
<td>Technical Area 49, located near Bandelier National Monument, is used as a training area and for outdoor tests on materials and equipment components that involve generating and receiving short bursts of high-energy, broad-spectrum microwaves. The Interagency Wildfire Center and helipad located near the entrance to the technical area are operated by the National Park Service.</td>
</tr>
<tr>
<td>50 (Waste Management Site)</td>
<td>Technical Area 50, located near the center of the Laboratory, is the location of waste management facilities, including the Radioactive Liquid Waste Treatment Facility and the Waste Characterization, Reduction, and Repackaging Facility. The Actinide Research and Technology Instruction Center is also located in this technical area.</td>
</tr>
<tr>
<td>51 (Environmental Research Site)</td>
<td>Technical Area 51, located on Pajarito Road in the eastern portion of the Laboratory, is used for research and experimental studies on the long-term impacts of radioactive materials on the environment. Various types of waste storage and coverings are studied at this technical area.</td>
</tr>
<tr>
<td>52 (Reactor Development Site)</td>
<td>Technical Area 52 is located in the north-central portion of the Laboratory. A wide variety of theoretical and computational research and development activities related to nuclear reactor performance and safety, as well as to several environmental, safety, and health activities, are carried out at this technical area.</td>
</tr>
<tr>
<td>53 (Los Alamos Neutron Science Center)</td>
<td>Technical Area 53, located in the northern portion of the Laboratory, includes the Los Alamos Neutron Science Center. This facility houses one of the largest research linear accelerators in the world and supports both basic and applied research programs. Basic research includes studies of subatomic and particle physics, atomic physics, neutrinos, and the chemistry of subatomic interactions. Applied research includes materials science studies that use neutron spallation and contribute to defense programs. The facility also irradiates targets for medical isotope production.</td>
</tr>
<tr>
<td>54 (Waste Disposal Site)</td>
<td>Technical Area 54, located on the eastern border of the Laboratory, is one of the largest technical areas at the Laboratory. Its primary function is management of solid radioactive and hazardous chemical wastes, including storage.</td>
</tr>
<tr>
<td>55 (Plutonium Facility Complex Site)</td>
<td>Technical Area 55, located in the center of the Laboratory along Pajarito Road, is the location of the Plutonium Facility Complex. The Plutonium Facility provides chemical and metallurgical processes for recovering, purifying, and converting plutonium and other actinides into many compounds and forms. Radiological operations in the Radiological Laboratory/Utility/Office Building began in 2014.</td>
</tr>
</tbody>
</table>
Technical Area Activities

57 (Fenton Hill Site) Technical Area 57 is located about 20 miles (32 kilometers) west of the Laboratory on land administered by the U.S. Forest Service. The site has been used by the Laboratory since 1974, subject to an interagency agreement between the U.S. Department of Energy and the U.S. Forest Service. The site was originally developed for the Hot Dry Rock geothermal energy program, which was terminated in 1995, and subsequently used for astronomical studies. In 2012, the Laboratory demolished and removed several small structures, trailers, equipment pads, and equipment and implemented site stabilization. Some astronomy activities may continue.

58 (Twomile North Site) Technical Area 58, located near the Laboratory’s northwest border on Twomile Mesa North, is a forested area reserved for future use because of its proximity to Technical Area 03. The technical area houses the protective force running track, a few Laboratory-owned storage trailers, and a temporary storage area.

59 (Occupational Health Site) Technical Area 59 is located on the south side of Pajarito Road adjacent to Technical Area 03. Technical Area 59 is the location of staff who provide support services in health physics, risk management, industrial hygiene and safety, policy and program analysis, air quality, water quality and hydrology, hazardous and solid waste analysis, and radiation protection. The medical facility at Technical Area 59 includes a clinical laboratory and provides bioassay sample analytical support.

60 (Sigma Mesa) Technical Area 60 is located southeast of Technical Area 03. The technical area is primarily used for physical support and infrastructure activities. The Nevada Test Site Test Fabrication Facility and a test tower are also located at Technical Area 60. This facility is now being used as a waste storage area.

61 (East Jemez Site) Technical Area 61, located in the northern portion of the Laboratory, contains physical support and infrastructure facilities, including a sanitary waste transfer station operated by Los Alamos County, a photovoltaic array, and sewer pump stations. This is the former site of the Los Alamos County landfill, which is now closed and capped.

62 (Northwest Site) Technical Area 62, located next to Technical Area 03 and West Jemez Road in the northwest corner of the Laboratory, serves as a forested buffer zone. This technical area is reserved for future use.

63 (Pajarito Service Area) Technical Area 63, located in the north-central portion of the Laboratory, contains physical support and infrastructure facilities and is the location of the new Transuranic Waste Facility.

64 (Central Guard Site) Technical Area 64 is located in the north-central portion of the Laboratory and provides offices and storage space.

66 (Central Technical Support Site) Technical Area 66 is located on the southeast side of Pajarito Road in the center of the Laboratory. The Advanced Technology Assessment Center, the only facility at this technical area, provides office and technical space for technology transfer and other industrial partnership activities.

67 (Pajarito Mesa Site) Technical Area 67 is a forested buffer zone located in the north-central portion of the Laboratory. No operations or facilities are currently located at the technical area.

68 (Water Canyon Site) Technical Area 68, located in the southern portion of the Laboratory, is a testing area for dynamic experiments. Twenty acres of land have been converted into a testing area for detecting materials of interest.

69 (Anchor North Site) Technical Area 69, located in the northwestern corner of the Laboratory, serves as a forested buffer zone. The Emergency Operations Center is located here.

70 (Rio Grande Site) Technical Area 70 is located on the southeastern boundary of the Laboratory. It is an undeveloped technical area that serves as a buffer zone. Part of the White Rock Canyon Reserve is located here.
Technical Area Activities

<table>
<thead>
<tr>
<th>Technical Area</th>
<th>Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>71 (Southeast Site)</td>
<td>Technical Area 71 is located on the southeastern boundary of the Laboratory and is adjacent to White Rock to the northeast. It is an undeveloped technical area that serves as a buffer zone for the High Explosives Test Area. Part of the White Rock Canyon Reserve is located here.</td>
</tr>
<tr>
<td>72 (East Entry Site)</td>
<td>Technical Area 72, located along East Jemez Road on the northeastern boundary of the Laboratory, is used by protective force personnel for required firearms training and practice purposes.</td>
</tr>
<tr>
<td>73 (Airport Site)</td>
<td>Technical Area 73 is located along the northern boundary of the Laboratory, adjacent to NM 502. Los Alamos County manages, operates, and maintains the community airport under a leasing arrangement with the U.S. Department of Energy. Use of the airport by private individuals is permitted with special restrictions.</td>
</tr>
<tr>
<td>74 (Otowi Tract)</td>
<td>Technical Area 74 is a forested area in the northeastern corner of the Laboratory. A large portion of this technical area has been conveyed to Los Alamos County or transferred to the Department of the Interior in trust for the Pueblo de San Ildefonso and is no longer part of the Laboratory.</td>
</tr>
</tbody>
</table>
Appendix D
RELATED WEBSITES

For more information on environmental topics at Los Alamos National Laboratory (the Laboratory), access the following websites:

<table>
<thead>
<tr>
<th>Current and past environmental reports and supplemental data tables</th>
<th>http://www.lanl.gov/environment/environmental-report.php</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Laboratory’s website</td>
<td>http://www.lanl.gov/</td>
</tr>
<tr>
<td>Los Alamos Field Office</td>
<td></td>
</tr>
<tr>
<td>Los Alamos Field Office website</td>
<td></td>
</tr>
<tr>
<td>The Laboratory’s air quality pages</td>
<td>http://www.lanl.gov/environment/protection/monitoring/air-quality.php</td>
</tr>
<tr>
<td>The Laboratory’s water quality pages</td>
<td>http://www.lanl.gov/environment/protection/monitoring/water-quality.php</td>
</tr>
<tr>
<td>The Laboratory’s environmental stewardship pages</td>
<td>http://www.lanl.gov/environment/index.php</td>
</tr>
<tr>
<td>N3B – Los Alamos (Legacy Waste Cleanup Contractor)</td>
<td>https://n3b-la.com/</td>
</tr>
<tr>
<td>The Laboratory’s Electronic Public Reading Room</td>
<td>https://eprr.lanl.gov/</td>
</tr>
<tr>
<td>Environmental Cleanup Electronic Public Reading Room</td>
<td>https://ext.em-la.doe.gov/EPRR/</td>
</tr>
<tr>
<td>The Laboratory’s environmental database</td>
<td>https://www.intellusnm.com/</td>
</tr>
</tbody>
</table>
The following Los Alamos National Laboratory organizations perform environmental surveillance, ensure environmental compliance, and provide environmental data for this report:

Associate Directorate for Environment, Safety, Health, Quality, Safeguards, and Security
Environmental Protection and Compliance Division
Waste Programs Division
N3B Los Alamos
Environmental Remediation Program

Technical coordination by Leslie Hansen, Environmental Protection and Compliance, Environmental Stewardship Group

Additional coordination assistance by Sonja Salzman, Nuclear Process Infrastructure Division, Hazardous Materials Management Group

Edited by Marisa Lamb, lead editor, Margaret Burgess, Halo Golden, Tamara Hawman, Sheila Molony, Weston Phippen, Octavio Ramos Jr., Emily Rybarczyk, Communications and Public Affairs, Communications and External Affairs

Composition by Emilee Jones, Communications and Public Affairs, Communications and External Affairs

Los Alamos National Laboratory is an affirmative action/equal opportunity employer.